Synthesized MgFe2O4 nanoparticles to remove Pb2+ from aqueous solution

Nguyen Nho Dung, Phan Thi Kim Thu, Nguyen Thanh Binh, Nguyen Giang Nam, Nguyen Mau Thanh
{"title":"Synthesized MgFe2O4 nanoparticles to remove Pb2+ from aqueous solution","authors":"Nguyen Nho Dung, Phan Thi Kim Thu, Nguyen Thanh Binh, Nguyen Giang Nam, Nguyen Mau Thanh","doi":"10.62239/jca.2023.077","DOIUrl":null,"url":null,"abstract":"In the present paper, nanosized magnesium ferrite (MgFe2O4) material is synthesized by the hydrothermal method. The size and microstructure of magnesium ferrite were analyzed based on X-ray diffraction (XRD), scanning electron microscopy (SEM). The nitrogen adsorption-desorption was used for determination of surface area (Brunauer – Emmett – Teller (BET)) and porosity of the fabricated material. The adsorption behavior of Pb2+ using a new magnetic adsorbent is investigated. The adsorption characteristic and Pb2+ removal efficiency of the adsorbent have been determined by investigating the influence of operating variables such as dosage of manganese ferrite. The maximum Pb2+ sorption capacity was found to be 16,08 (mg/g) and obtained using 0,1 g/L MgFe2O4 when pH equals 5, a temperature of 25 °C, and contact time as 24 h. The Langmuir and Freundlich models were used to fit the experimental data and these showed good correlations.","PeriodicalId":23507,"journal":{"name":"Vietnam Journal of Catalysis and Adsorption","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Catalysis and Adsorption","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62239/jca.2023.077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper, nanosized magnesium ferrite (MgFe2O4) material is synthesized by the hydrothermal method. The size and microstructure of magnesium ferrite were analyzed based on X-ray diffraction (XRD), scanning electron microscopy (SEM). The nitrogen adsorption-desorption was used for determination of surface area (Brunauer – Emmett – Teller (BET)) and porosity of the fabricated material. The adsorption behavior of Pb2+ using a new magnetic adsorbent is investigated. The adsorption characteristic and Pb2+ removal efficiency of the adsorbent have been determined by investigating the influence of operating variables such as dosage of manganese ferrite. The maximum Pb2+ sorption capacity was found to be 16,08 (mg/g) and obtained using 0,1 g/L MgFe2O4 when pH equals 5, a temperature of 25 °C, and contact time as 24 h. The Langmuir and Freundlich models were used to fit the experimental data and these showed good correlations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用合成的 MgFe2O4 纳米粒子去除水溶液中的 Pb2+
本文采用水热法合成了纳米级镁铁氧体(MgFe2O4)材料。通过 X 射线衍射(XRD)和扫描电子显微镜(SEM)分析了镁铁氧体的尺寸和微观结构。利用氮吸附-解吸法测定了制备材料的表面积(Brunauer - Emmett - Teller (BET))和孔隙率。研究了新型磁性吸附剂对 Pb2+ 的吸附行为。通过研究锰铁氧体用量等操作变量的影响,确定了吸附剂的吸附特性和 Pb2+ 去除效率。当 pH 值等于 5、温度为 25 °C、接触时间为 24 小时时,使用 0.1 g/L MgFe2O4 所获得的最大 Pb2+ 吸附能力为 16.08(mg/g)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preparation of graphene from polyethylene terephthalate (PET) bottle wastes and its use for the removal of Methylene blue from aqueous solution Synthesis and application of biochar from agricultural by-products. Effect of pyrolysis temperature on the acid-base properties of biochar Synthesized MgFe2O4 nanoparticles to remove Pb2+ from aqueous solution Fabrication of activated carbon from polyethylene terephthalate plastic waste (PET) and their application for the removal of organic dyes in aqueous solution by chemical method A novel adsorbent based electroplating sludge – rice husk char for removal of methylene blue and ciprofloxacin in aqueous solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1