Le Thi Phuong Thao, Vo Thi Hanh, Bui Hoang Bac, Tran Thi Thu Huong, Chu Minh Hieu, Nguyen Ngoc Tinh, Nguyen Thi Phuong, Le Thi Duyen
{"title":"Adsorption properties of nanotube type halloysite clay mineral for La3+ ions","authors":"Le Thi Phuong Thao, Vo Thi Hanh, Bui Hoang Bac, Tran Thi Thu Huong, Chu Minh Hieu, Nguyen Ngoc Tinh, Nguyen Thi Phuong, Le Thi Duyen","doi":"10.62239/jca.2023.067","DOIUrl":null,"url":null,"abstract":"This paper presents the results of research on the adsorption capacity of La3+ ions from aqueous solution of nanotube-type halloysite. The influence of operational conditions such as contact time, initial concentration of La3+, initial pH of solution, halloysite mass and temperature on the adsorption of La3+ had also been examined. The results show that the optimal efficiency and adsorption capacity of La3+ reached 90.19% and 3.76 mg/g in the suitable conditions: haloysite mass 0.6 g/50 mL solution, initial La3+ ion concentration 50 mg/L, pH 5.8, contact time 60 minutes at room temperature (25oC). The adsorption isotherm was studied based on both Langmuir and Freundlich models. The adsorption kinetics were studied by both pseudo-first-order and pseudo-second-order kinetic models. These results open up prospects for the application of haloysite clay minerals to remove and recover La in polluted water.","PeriodicalId":23507,"journal":{"name":"Vietnam Journal of Catalysis and Adsorption","volume":"154 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Catalysis and Adsorption","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62239/jca.2023.067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the results of research on the adsorption capacity of La3+ ions from aqueous solution of nanotube-type halloysite. The influence of operational conditions such as contact time, initial concentration of La3+, initial pH of solution, halloysite mass and temperature on the adsorption of La3+ had also been examined. The results show that the optimal efficiency and adsorption capacity of La3+ reached 90.19% and 3.76 mg/g in the suitable conditions: haloysite mass 0.6 g/50 mL solution, initial La3+ ion concentration 50 mg/L, pH 5.8, contact time 60 minutes at room temperature (25oC). The adsorption isotherm was studied based on both Langmuir and Freundlich models. The adsorption kinetics were studied by both pseudo-first-order and pseudo-second-order kinetic models. These results open up prospects for the application of haloysite clay minerals to remove and recover La in polluted water.