Gyroid Triply Periodic Minimal Surface Lattice Structure Enables Improved Superelasticity of CuAlMn Shape Memory Alloy

IF 2.9 2区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Acta Metallurgica Sinica-English Letters Pub Date : 2024-03-05 DOI:10.1007/s40195-024-01678-0
Mengwei Wu, Chunmei Ma, Ruiping Liu, Huadong Fu
{"title":"Gyroid Triply Periodic Minimal Surface Lattice Structure Enables Improved Superelasticity of CuAlMn Shape Memory Alloy","authors":"Mengwei Wu,&nbsp;Chunmei Ma,&nbsp;Ruiping Liu,&nbsp;Huadong Fu","doi":"10.1007/s40195-024-01678-0","DOIUrl":null,"url":null,"abstract":"<div><p>Improving the shape memory effect and superelasticity of Cu-based shape memory alloys (SMAs) has always been a research hotspot in many countries. This work systematically investigates the effects of Gyroid triply periodic minimal surface (TPMS) lattice structures with different unit sizes and volume fractions on the manufacturing viability, compressive mechanical response, superelasticity and heating recovery properties of CuAlMn SMAs. The results show that the increased specific surface area of the lattice structure leads to increased powder adhesion, making the manufacturability proportional to the unit size and volume fraction. The compressive response of the CuAlMn SMAs Gyroid TPMS lattice structure is negatively correlated with the unit size and positively correlated with the volume fraction. The superelastic recovery of all CuAlMn SMAs with Gyroid TPMS lattice structures is within 5% when the cyclic cumulative strain is set to be 10%. The lattice structure shows the maximum superelasticity when the unit size is 3.00 mm and the volume fraction is 12%, and after heating recovery, the total recovery strain increases as the volume fraction increases. This study introduces a new strategy to enhance the superelastic properties and expand the applications of CuAlMn SMAs in soft robotics, medical equipment, aerospace and other fields.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"37 6","pages":"1047 - 1065"},"PeriodicalIF":2.9000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-024-01678-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Improving the shape memory effect and superelasticity of Cu-based shape memory alloys (SMAs) has always been a research hotspot in many countries. This work systematically investigates the effects of Gyroid triply periodic minimal surface (TPMS) lattice structures with different unit sizes and volume fractions on the manufacturing viability, compressive mechanical response, superelasticity and heating recovery properties of CuAlMn SMAs. The results show that the increased specific surface area of the lattice structure leads to increased powder adhesion, making the manufacturability proportional to the unit size and volume fraction. The compressive response of the CuAlMn SMAs Gyroid TPMS lattice structure is negatively correlated with the unit size and positively correlated with the volume fraction. The superelastic recovery of all CuAlMn SMAs with Gyroid TPMS lattice structures is within 5% when the cyclic cumulative strain is set to be 10%. The lattice structure shows the maximum superelasticity when the unit size is 3.00 mm and the volume fraction is 12%, and after heating recovery, the total recovery strain increases as the volume fraction increases. This study introduces a new strategy to enhance the superelastic properties and expand the applications of CuAlMn SMAs in soft robotics, medical equipment, aerospace and other fields.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
陀螺仪三周期最小表面晶格结构提高了铜铝锰形状记忆合金的超弹性
提高铜基形状记忆合金(SMA)的形状记忆效果和超弹性一直是许多国家的研究热点。本研究系统研究了不同单位尺寸和体积分数的Gyroid三周期最小表面(TPMS)晶格结构对CuAlMn SMA的制造可行性、压缩机械响应、超弹性和加热恢复性能的影响。结果表明,晶格结构比表面积的增加会导致粉末附着力的增加,从而使可制造性与单元尺寸和体积分数成正比。CuAlMn SMAs Gyroid TPMS 晶格结构的压缩响应与单位尺寸呈负相关,与体积分数呈正相关。当循环累积应变设定为 10%时,所有具有 Gyroid TPMS 晶格结构的铜铝锰 SMA 的超弹性恢复均在 5%以内。当单元尺寸为 3.00 mm、体积分数为 12% 时,晶格结构显示出最大的超弹性,加热恢复后,总恢复应变随着体积分数的增加而增加。这项研究为增强 CuAlMn SMAs 的超弹性性能和扩大其在软机器人、医疗设备、航空航天等领域的应用提出了新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Metallurgica Sinica-English Letters
Acta Metallurgica Sinica-English Letters METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
6.60
自引率
14.30%
发文量
122
审稿时长
2 months
期刊介绍: This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.
期刊最新文献
Effects of Thermal Aging on the Oxidation Behavior of 316L Austenitic Steel in 600 °C Supercritical Fired Boiler: Mechanism Based on Interface Features ZIF-8 Modified Ce–Sol–gel Film on Rebar for Enhancing Corrosion Resistance Design of Ultra-Strong As-Cast Titanium Alloy at 600 ℃ by Using Cluster Formula Microstructure Evolution and High Strength-Ductility Synergy of Ti-13Nb-13Zr-2Ta Alloy Fabricated by Laser Powder Bed Fusion Improvement of Formation, Microstructure and Mechanical Properties of TIG Welded TC4 Titanium Alloy by Ultrasonic Coaxial Radiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1