Hybrid Edge Detection Methods in Image Steganography for High Embedding Capacity

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Cybernetics and Information Technologies Pub Date : 2024-03-01 DOI:10.2478/cait-2024-0009
Marwah Habiban, Fatima R. Hamade, Nadia A. Mohsin
{"title":"Hybrid Edge Detection Methods in Image Steganography for High Embedding Capacity","authors":"Marwah Habiban, Fatima R. Hamade, Nadia A. Mohsin","doi":"10.2478/cait-2024-0009","DOIUrl":null,"url":null,"abstract":"\n In this research, we propose two new image steganography techniques focusing on increasing image-embedding capacity. The methods will encrypt and hide secret information in the edge area. We utilized two hybrid methods for the edge detection of the images. The first method combines the Laplacian of Gaussian (LoG) with the wavelet transform algorithm and the second method mixes the LOG and Canny. The Combining was performed using addWeighted. The text message will be encrypted using the GIFT cipher method for further security and low computation. For the effectiveness evaluation of the proposed method, various evaluation metrics were used such as embedding capacity, PSNR, MSE, and SSIM. The obtained results indicate that the proposed method has a greater embedding capacity in comparison with other methods, while still maintaining high levels of imperceptibility in the cover image.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2024-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, we propose two new image steganography techniques focusing on increasing image-embedding capacity. The methods will encrypt and hide secret information in the edge area. We utilized two hybrid methods for the edge detection of the images. The first method combines the Laplacian of Gaussian (LoG) with the wavelet transform algorithm and the second method mixes the LOG and Canny. The Combining was performed using addWeighted. The text message will be encrypted using the GIFT cipher method for further security and low computation. For the effectiveness evaluation of the proposed method, various evaluation metrics were used such as embedding capacity, PSNR, MSE, and SSIM. The obtained results indicate that the proposed method has a greater embedding capacity in comparison with other methods, while still maintaining high levels of imperceptibility in the cover image.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高嵌入能力图像隐写术中的混合边缘检测方法
在这项研究中,我们提出了两种新的图像隐写技术,重点是提高图像嵌入能力。这些方法将在边缘区域加密和隐藏秘密信息。我们采用了两种混合方法来进行图像边缘检测。第一种方法将高斯拉普拉斯(LoG)与小波变换算法相结合,第二种方法将 LOG 与 Canny 算法相结合。组合使用 addWeighted 进行。文本信息将使用 GIFT 密码方法进行加密,以提高安全性和降低计算量。为了评估所提方法的有效性,使用了各种评估指标,如嵌入容量、PSNR、MSE 和 SSIM。结果表明,与其他方法相比,所提出的方法具有更大的嵌入容量,同时还能在覆盖图像中保持高水平的不可感知性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cybernetics and Information Technologies
Cybernetics and Information Technologies COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.20
自引率
25.00%
发文量
35
审稿时长
12 weeks
期刊最新文献
A Review on State-of-Art Blockchain Schemes for Electronic Health Records Management Degradation Recoloring Deutan CVD Image from Block SVD Watermark Integration Approaches for Heterogeneous Big Data: A Survey Efficient DenseNet Model with Fusion of Channel and Spatial Attention for Facial Expression Recognition Hybrid Edge Detection Methods in Image Steganography for High Embedding Capacity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1