Memorized Rapidly Exploring Random Tree Optimization (MRRTO): An Enhanced Algorithm for Robot Path Planning

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Cybernetics and Information Technologies Pub Date : 2024-03-01 DOI:10.2478/cait-2024-0011
Dena Kadhim Muhsen, Ahmed T. Sadiq, Firas Abdulrazzaq Raheem
{"title":"Memorized Rapidly Exploring Random Tree Optimization (MRRTO): An Enhanced Algorithm for Robot Path Planning","authors":"Dena Kadhim Muhsen, Ahmed T. Sadiq, Firas Abdulrazzaq Raheem","doi":"10.2478/cait-2024-0011","DOIUrl":null,"url":null,"abstract":"\n With the advancement of the robotics world, many path-planning algorithms have been proposed. One of the important algorithms is the Rapidly Exploring Random Tree (RRT) but with the drawback of not guaranteeing the optimal path. This paper solves this problem by proposing a Memorized RRT Optimization Algorithm (MRRTO Algorithm) using memory as an optimization step. The algorithm obtains a single path from the start point, and another from the target point to store only the last visited new node. The method for computing the nearest node depends on the position, when a new node is added, the RRT function checks if there is another node closer to the new node rather than that is closer to the goal point. Simulation results with different environments show that the MRRTO outperforms the original RRT Algorithm, graph algorithms, and metaheuristic algorithms in terms of reducing time consumption, path length, and number of nodes used.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2024-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

With the advancement of the robotics world, many path-planning algorithms have been proposed. One of the important algorithms is the Rapidly Exploring Random Tree (RRT) but with the drawback of not guaranteeing the optimal path. This paper solves this problem by proposing a Memorized RRT Optimization Algorithm (MRRTO Algorithm) using memory as an optimization step. The algorithm obtains a single path from the start point, and another from the target point to store only the last visited new node. The method for computing the nearest node depends on the position, when a new node is added, the RRT function checks if there is another node closer to the new node rather than that is closer to the goal point. Simulation results with different environments show that the MRRTO outperforms the original RRT Algorithm, graph algorithms, and metaheuristic algorithms in terms of reducing time consumption, path length, and number of nodes used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
记忆快速探索随机树优化(MRRTO):机器人路径规划的增强算法
随着机器人技术的发展,人们提出了许多路径规划算法。其中一种重要的算法是快速探索随机树(RRT),但其缺点是不能保证最优路径。为了解决这个问题,本文提出了一种记忆化 RRT 优化算法(MRRTO 算法),将记忆作为优化步骤。该算法从起点获取一条路径,从目标点获取另一条路径,只存储最后访问的新节点。计算最近节点的方法取决于位置,当添加一个新节点时,RRT 函数会检查是否有另一个节点离新节点更近,而不是离目标点更近。不同环境下的仿真结果表明,MRRTO 在减少时间消耗、路径长度和使用节点数量方面优于原始 RRT 算法、图算法和元启发式算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cybernetics and Information Technologies
Cybernetics and Information Technologies COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.20
自引率
25.00%
发文量
35
审稿时长
12 weeks
期刊最新文献
A Review on State-of-Art Blockchain Schemes for Electronic Health Records Management Degradation Recoloring Deutan CVD Image from Block SVD Watermark Integration Approaches for Heterogeneous Big Data: A Survey Efficient DenseNet Model with Fusion of Channel and Spatial Attention for Facial Expression Recognition Hybrid Edge Detection Methods in Image Steganography for High Embedding Capacity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1