Adriana Camacho, María Mena, Jorge Albuja-Sánchez, Dana Cruz, Mariela Anaguano-Marcillo
{"title":"STRENGTH DEVELOPMENT IN CLAY-STABILIZED BRICKS WITH CEMENT AND RICE BY-PRODUCTS","authors":"Adriana Camacho, María Mena, Jorge Albuja-Sánchez, Dana Cruz, Mariela Anaguano-Marcillo","doi":"10.14455/isec.2024.11(1).sus-13","DOIUrl":null,"url":null,"abstract":"Bricks, traditionally used in the construction sector, use high energy and generate significant emissions of CO2 in their production process. As a result, as a lower-impact and low-cost alternative, this study analyzed different types of mixtures of soil, cement, rice husk, and rice husk ash to decrease the amount of cement, which was substituted gradually with rice husk and rice husk ash, to stabilize and improve the characteristics of clay, and to compare the effectiveness of earth stabilized bricks respect to traditional bricks. The research was carried out in three phases which were soil-cement, soil-cement-rice husk ash, and soil-cement-rice husk ash-rice husk, from which we concluded the best mixture consists in low-plasticity clay soil (CL), 14% Portland cement, 6% rice husk ash, and 4% rice husk, which in the simple compressive strength after 7 days of curing is not affected by the decrease in cement but increases by 0.41 MPa, which in addition shows better results in simple compression, absorption, and flexure tests than traditional bricks.","PeriodicalId":477265,"journal":{"name":"Proceedings of International Structural Engineering and Construction","volume":"522 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of International Structural Engineering and Construction","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.14455/isec.2024.11(1).sus-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Bricks, traditionally used in the construction sector, use high energy and generate significant emissions of CO2 in their production process. As a result, as a lower-impact and low-cost alternative, this study analyzed different types of mixtures of soil, cement, rice husk, and rice husk ash to decrease the amount of cement, which was substituted gradually with rice husk and rice husk ash, to stabilize and improve the characteristics of clay, and to compare the effectiveness of earth stabilized bricks respect to traditional bricks. The research was carried out in three phases which were soil-cement, soil-cement-rice husk ash, and soil-cement-rice husk ash-rice husk, from which we concluded the best mixture consists in low-plasticity clay soil (CL), 14% Portland cement, 6% rice husk ash, and 4% rice husk, which in the simple compressive strength after 7 days of curing is not affected by the decrease in cement but increases by 0.41 MPa, which in addition shows better results in simple compression, absorption, and flexure tests than traditional bricks.