N. Zerhouni Abdou , S. Reboh , L. Brunet , M. Alepidis , P. Acosta Alba , S. Cristoloveanu , I. Ionica
{"title":"Methodology for parameters extraction with undoped junctionless EZ-FETs","authors":"N. Zerhouni Abdou , S. Reboh , L. Brunet , M. Alepidis , P. Acosta Alba , S. Cristoloveanu , I. Ionica","doi":"10.1016/j.sse.2024.108897","DOIUrl":null,"url":null,"abstract":"<div><p>The junctionless EZ-FET is a simple FDSOI-like device that requires only two lithography levels and standard processing steps. With its simplified architecture and fabrication flow, and using undoped source and drain terminals, the device allows for a fast electrical evaluation of semiconductor films on insulators (SOI) and gate stacks. This paper describes an electrical model that reproduces the peculiar transfer characteristics of a junctionless EZ-FET. The model is then simplified to develop a pragmatic parameter extraction methodology. This methodology is experimentally validated and provides the electrical properties of SOI films (mobility, threshold voltage) for both electrons and holes.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"217 ","pages":"Article 108897"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110124000467","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The junctionless EZ-FET is a simple FDSOI-like device that requires only two lithography levels and standard processing steps. With its simplified architecture and fabrication flow, and using undoped source and drain terminals, the device allows for a fast electrical evaluation of semiconductor films on insulators (SOI) and gate stacks. This paper describes an electrical model that reproduces the peculiar transfer characteristics of a junctionless EZ-FET. The model is then simplified to develop a pragmatic parameter extraction methodology. This methodology is experimentally validated and provides the electrical properties of SOI films (mobility, threshold voltage) for both electrons and holes.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.