Zhenzhen Yang, Zelong Lin, Yongpeng Yang, Jiaqi Li
{"title":"Dual-Path Graph Neural Network with Adaptive Auxiliary Module for Link Prediction.","authors":"Zhenzhen Yang, Zelong Lin, Yongpeng Yang, Jiaqi Li","doi":"10.1089/big.2023.0130","DOIUrl":null,"url":null,"abstract":"<p><p>Link prediction, which has important applications in many fields, predicts the possibility of the link between two nodes in a graph. Link prediction based on Graph Neural Network (GNN) obtains node representation and graph structure through GNN, which has attracted a growing amount of attention recently. However, the existing GNN-based link prediction approaches possess some shortcomings. On the one hand, because a graph contains different types of nodes, it leads to a great challenge for aggregating information and learning node representation from its neighbor nodes. On the other hand, the attention mechanism has been an effect instrument for enhancing the link prediction performance. However, the traditional attention mechanism is always monotonic for query nodes, which limits its influence on link prediction. To address these two problems, a Dual-Path Graph Neural Network (DPGNN) for link prediction is proposed in this study. First, we propose a novel Local Random Features Augmentation for Graph Convolution Network as a baseline of one path. Meanwhile, Graph Attention Network version 2 based on dynamic attention mechanism is adopted as a baseline of the other path. And then, we capture more meaningful node representation and more accurate link features by concatenating the information of these two paths. In addition, we propose an adaptive auxiliary module for better balancing the weight of auxiliary tasks, which brings more benefit to link prediction. Finally, extensive experiments verify the effectiveness and superiority of our proposed DPGNN for link prediction.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2023.0130","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Link prediction, which has important applications in many fields, predicts the possibility of the link between two nodes in a graph. Link prediction based on Graph Neural Network (GNN) obtains node representation and graph structure through GNN, which has attracted a growing amount of attention recently. However, the existing GNN-based link prediction approaches possess some shortcomings. On the one hand, because a graph contains different types of nodes, it leads to a great challenge for aggregating information and learning node representation from its neighbor nodes. On the other hand, the attention mechanism has been an effect instrument for enhancing the link prediction performance. However, the traditional attention mechanism is always monotonic for query nodes, which limits its influence on link prediction. To address these two problems, a Dual-Path Graph Neural Network (DPGNN) for link prediction is proposed in this study. First, we propose a novel Local Random Features Augmentation for Graph Convolution Network as a baseline of one path. Meanwhile, Graph Attention Network version 2 based on dynamic attention mechanism is adopted as a baseline of the other path. And then, we capture more meaningful node representation and more accurate link features by concatenating the information of these two paths. In addition, we propose an adaptive auxiliary module for better balancing the weight of auxiliary tasks, which brings more benefit to link prediction. Finally, extensive experiments verify the effectiveness and superiority of our proposed DPGNN for link prediction.
Big DataCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍:
Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions.
Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government.
Big Data coverage includes:
Big data industry standards,
New technologies being developed specifically for big data,
Data acquisition, cleaning, distribution, and best practices,
Data protection, privacy, and policy,
Business interests from research to product,
The changing role of business intelligence,
Visualization and design principles of big data infrastructures,
Physical interfaces and robotics,
Social networking advantages for Facebook, Twitter, Amazon, Google, etc,
Opportunities around big data and how companies can harness it to their advantage.