Pathway Planning of Nuclear Power Development Incorporating Assessment of Nuclear Event Risk

IF 5.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Modern Power Systems and Clean Energy Pub Date : 2024-01-11 DOI:10.35833/MPCE.2023.000265
Xinxin Yang;Yusheng Xue;Bin Cai
{"title":"Pathway Planning of Nuclear Power Development Incorporating Assessment of Nuclear Event Risk","authors":"Xinxin Yang;Yusheng Xue;Bin Cai","doi":"10.35833/MPCE.2023.000265","DOIUrl":null,"url":null,"abstract":"The nuclear event risk (NER) is an important and disputed factor that should be reasonably considered when planning the pathway of nuclear power development (NPD) to assess the benefits and risks of developing nuclear power more objectively. This paper aims to explore the impact of nuclear events on NPD pathway planning. The influence of nuclear events is quantified as a monetary risk component, and an optimization model that incorporates the NER in the objective function is proposed. To optimize the pathway of NPD in the lowcarbon transition course of power supply structure evolution, a simulation model is built to deduce alternative NPD pathways and corresponding power supply evolution scenarios under the constraint of an exogenously assigned carbon emission pathway (CEP); moreover, a method is proposed to describe the CEP by superimposing the maximum carbon emission space and each carbon emission reduction (CER) component, and various CER components are clustered considering the emission reduction characteristics and resource endowments of different power generation technologies. A case study is conducted to explore the impact of NER and its risk valuation uncertainty on NPD pathway planning. The method presented in this paper allows the impact of nuclear events on NPD pathway planning to be quantified and improves the level of coordinated optimization of benefits and risks.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 2","pages":"500-513"},"PeriodicalIF":5.7000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10396833","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10396833/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The nuclear event risk (NER) is an important and disputed factor that should be reasonably considered when planning the pathway of nuclear power development (NPD) to assess the benefits and risks of developing nuclear power more objectively. This paper aims to explore the impact of nuclear events on NPD pathway planning. The influence of nuclear events is quantified as a monetary risk component, and an optimization model that incorporates the NER in the objective function is proposed. To optimize the pathway of NPD in the lowcarbon transition course of power supply structure evolution, a simulation model is built to deduce alternative NPD pathways and corresponding power supply evolution scenarios under the constraint of an exogenously assigned carbon emission pathway (CEP); moreover, a method is proposed to describe the CEP by superimposing the maximum carbon emission space and each carbon emission reduction (CER) component, and various CER components are clustered considering the emission reduction characteristics and resource endowments of different power generation technologies. A case study is conducted to explore the impact of NER and its risk valuation uncertainty on NPD pathway planning. The method presented in this paper allows the impact of nuclear events on NPD pathway planning to be quantified and improves the level of coordinated optimization of benefits and risks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳入核事件风险评估的核电发展路径规划
核事件风险(NER)是规划核电发展(NPD)路径时应合理考虑的一个重要且有争议的因素,以更客观地评估发展核电的效益和风险。本文旨在探讨核事件对 NPD 路径规划的影响。本文将核事件的影响量化为货币风险成分,并提出了将核反应堆纳入目标函数的优化模型。为了优化低碳转型过程中电源结构演化的 NPD 路径,建立了一个仿真模型,在外生分配的碳排放路径(CEP)约束下,推导出可供选择的 NPD 路径和相应的电源演化方案;此外,还提出了一种通过叠加最大碳排放空间和各碳减排量(CER)成分来描述 CEP 的方法,并考虑不同发电技术的减排特征和资源禀赋,对各种 CER 成分进行了聚类。通过案例研究,探讨了净减排量及其风险估值不确定性对净可再生发展路径规划的影响。本文提出的方法可量化核事件对 NPD 途径规划的影响,并提高收益与风险的协调优化水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Modern Power Systems and Clean Energy
Journal of Modern Power Systems and Clean Energy ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
12.30
自引率
14.30%
发文量
97
审稿时长
13 weeks
期刊介绍: Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.
期刊最新文献
Contents Contents Regional Power System Black Start with Run-of-River Hydropower Plant and Battery Energy Storage Power Flow Calculation for VSC-Based AC/DC Hybrid Systems Based on Fast and Flexible Holomorphic Embedding Machine Learning Based Uncertainty-Alleviating Operation Model for Distribution Systems with Energy Storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1