{"title":"Power Switching Based on Trajectory Planning and Sliding Mode Control for Solid Oxide Fuel Cell Systems","authors":"Zhen Wang;Guoqiang Liu;Xingbo Liu;Jie Wang;Zhiyang Jin;Xiaowei Fu;Zhuo Wang;Bing Jin;Zhonghua Deng;Xi Li","doi":"10.35833/MPCE.2024.000284","DOIUrl":null,"url":null,"abstract":"To improve the safety of the solid oxide fuel cell (SOFC) systems and avoid the generation of large amounts of pollutants during power switching, this paper designs a power switching strategy based on trajectory planning and sliding mode control (TP-SMC). The design elements of the power switching strategy are proposed through simulation analysis at first. Then, based on the gas transmission delay time and the change of gas flow obtained from testing, trajectory planning (TP) is implemented. Compared with other power switching strategies, it has been proven that the power switching strategy based on TP has significantly better control performance. Furthermore, considering the shortcomings and problems of TP in practical application, this paper introduces sliding mode control (SMC) on the basis of TP to improve the power switching strategy. The final simulation results also prove that the TP-SMC can effectively suppress the impact of uncertainty in gas flow and gas transmission delay time. Compared with TP, TP-SMC can ensure that under uncertain conditions, the SOFC system does not experience fuel starvation and temperature exceeding limit during power switching. Meanwhile, the NOx emissions are also within the normal and acceptable range. This paper can guide the power switching process of the actual SOFC systems to avoid safety issues and excessive generation of NOx, which is very helpful for improving the performance and service life of the SOFC systems.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 6","pages":"1968-1979"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747305","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10747305/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
To improve the safety of the solid oxide fuel cell (SOFC) systems and avoid the generation of large amounts of pollutants during power switching, this paper designs a power switching strategy based on trajectory planning and sliding mode control (TP-SMC). The design elements of the power switching strategy are proposed through simulation analysis at first. Then, based on the gas transmission delay time and the change of gas flow obtained from testing, trajectory planning (TP) is implemented. Compared with other power switching strategies, it has been proven that the power switching strategy based on TP has significantly better control performance. Furthermore, considering the shortcomings and problems of TP in practical application, this paper introduces sliding mode control (SMC) on the basis of TP to improve the power switching strategy. The final simulation results also prove that the TP-SMC can effectively suppress the impact of uncertainty in gas flow and gas transmission delay time. Compared with TP, TP-SMC can ensure that under uncertain conditions, the SOFC system does not experience fuel starvation and temperature exceeding limit during power switching. Meanwhile, the NOx emissions are also within the normal and acceptable range. This paper can guide the power switching process of the actual SOFC systems to avoid safety issues and excessive generation of NOx, which is very helpful for improving the performance and service life of the SOFC systems.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.