Development of AAV-Mediated Gene Therapy Approaches to Treat Skeletal Diseases.

IF 3.9 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Human gene therapy Pub Date : 2024-05-01 Epub Date: 2024-04-08 DOI:10.1089/hum.2024.022
Chujiao Lin, Matthew B Greenblatt, Guangping Gao, Jae-Hyuck Shim
{"title":"Development of AAV-Mediated Gene Therapy Approaches to Treat Skeletal Diseases.","authors":"Chujiao Lin, Matthew B Greenblatt, Guangping Gao, Jae-Hyuck Shim","doi":"10.1089/hum.2024.022","DOIUrl":null,"url":null,"abstract":"<p><p>Adeno-associated viral (AAV) vectors have emerged as crucial tools in advancing gene therapy for skeletal diseases, offering the potential for sustained expression with low postinfection immunogenicity and pathogenicity. Preclinical studies support both the therapeutic efficacy and safety of these vectors, illustrating the promise of AAV-mediated gene therapy. Emerging technologies and innovations in AAV-mediated gene therapy strategies, such as gene addition, gene replacement, gene silencing, and gene editing, offer new approaches to clinical application. Recently, the increasing preclinical applications of AAV to rare skeletal diseases, such as fibrodysplasia ossificans progressiva (FOP) and osteogenesis imperfecta (OI), and prevalent bone diseases, such as osteoporosis, bone fracture, critical-sized bone defects, and osteoarthritis, have been reported. Despite existing limitations in clinical use, such as high cost and safety, the AAV-mediated gene transfer platform is a promising approach to deliver therapeutic gene(s) to the skeleton to treat skeletal disorders, including those otherwise intractable by other therapeutic approaches. This review provides a comprehensive overview of the therapeutic advancements, challenges, limitations, and solutions within AAV-based gene therapy for prevalent and rare skeletal diseases.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302315/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/hum.2024.022","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Adeno-associated viral (AAV) vectors have emerged as crucial tools in advancing gene therapy for skeletal diseases, offering the potential for sustained expression with low postinfection immunogenicity and pathogenicity. Preclinical studies support both the therapeutic efficacy and safety of these vectors, illustrating the promise of AAV-mediated gene therapy. Emerging technologies and innovations in AAV-mediated gene therapy strategies, such as gene addition, gene replacement, gene silencing, and gene editing, offer new approaches to clinical application. Recently, the increasing preclinical applications of AAV to rare skeletal diseases, such as fibrodysplasia ossificans progressiva (FOP) and osteogenesis imperfecta (OI), and prevalent bone diseases, such as osteoporosis, bone fracture, critical-sized bone defects, and osteoarthritis, have been reported. Despite existing limitations in clinical use, such as high cost and safety, the AAV-mediated gene transfer platform is a promising approach to deliver therapeutic gene(s) to the skeleton to treat skeletal disorders, including those otherwise intractable by other therapeutic approaches. This review provides a comprehensive overview of the therapeutic advancements, challenges, limitations, and solutions within AAV-based gene therapy for prevalent and rare skeletal diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发治疗骨骼疾病的 AAV 基因疗法。
腺相关病毒(AAV)载体已成为推动骨骼疾病基因疗法的重要工具,具有持续表达、感染后免疫原性和致病性低的潜力。临床前研究证实了这些载体的治疗效果和安全性,说明了 AAV 介导的基因疗法大有可为。AAV 介导的基因治疗策略中的新兴技术和创新,如基因添加、基因替换、基因沉默和基因编辑,为临床应用提供了新的方法。最近,有报道称 AAV 在罕见骨骼疾病(如渐进性骨纤维增生症(FOP)和成骨不全症(OI))以及常见骨骼疾病(如骨质疏松症、骨折、临界大小骨缺损和骨关节炎)方面的临床前应用日益增多。尽管 AAV 介导的基因转移平台在临床应用中存在成本高、安全性差等局限性,但它是一种很有前景的方法,可将治疗基因输送到骨骼中,用于治疗骨骼疾病,包括其他治疗方法难以治愈的疾病。本综述全面概述了基于 AAV 的基因疗法在治疗流行和罕见骨骼疾病方面的进展、挑战、局限和解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Human gene therapy
Human gene therapy 医学-生物工程与应用微生物
CiteScore
6.50
自引率
4.80%
发文量
131
审稿时长
4-8 weeks
期刊介绍: Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases.
期刊最新文献
Neuroimaging Applications for the Delivery and Monitoring of Gene Therapy for Central Nervous System Diseases. Cyclosporin H Improves the Transduction of CD34+ Cells with an Anti-Sickling Globin Vector, a Possible Therapeutic Approach for Sickle Cell Disease. Adeno-Associated Virus Gene Transfer Ameliorates Progression of Skeletal Lesions in Mucopolysaccharidosis IVA Mice. Lentiviral Vector-Mediated Ex Vivo Hematopoietic Stem Cell Gene Therapy for Mucopolysaccharidosis IVA Murine Model. Suppression of CNS APOE4 Expression by miRNAs Delivered by the S2 AAVrh.10 Capsid-Modified AAV Vector.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1