RELIABILITY ASSESSMENT OF STEEL PORTAL FRAMES USING GAN FOR GENERATING SYNTHETIC DATA SAMPLE

ce/papers Pub Date : 2024-03-27 DOI:10.1002/cepa.3043
F. Ljubinković, M. Janković, H. Gervásio, L. S. da Silva
{"title":"RELIABILITY ASSESSMENT OF STEEL PORTAL FRAMES USING GAN FOR GENERATING SYNTHETIC DATA SAMPLE","authors":"F. Ljubinković,&nbsp;M. Janković,&nbsp;H. Gervásio,&nbsp;L. S. da Silva","doi":"10.1002/cepa.3043","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper addresses the challenge of reliability estimation in structural engineering, where determining failure probabilities is often uncertain due to insufficient characterization of randomness and scale of design problems. Current approaches, like EN 1990, lack sufficient data for research and simulations, particularly for low failure probabilities (around 10<sup>-4</sup>), making Monte Carlo simulations less accurate. The paper introduces Generative Adversarial Networks (GANs) as a solution to generate synthetic data to supplement existing examples. The study applies GANs to assess the reliability of steel portal-framed industrial buildings and evaluate the safety of this structural solution according to Eurocodes.</p>\n </div>","PeriodicalId":100223,"journal":{"name":"ce/papers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cepa.3043","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ce/papers","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cepa.3043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the challenge of reliability estimation in structural engineering, where determining failure probabilities is often uncertain due to insufficient characterization of randomness and scale of design problems. Current approaches, like EN 1990, lack sufficient data for research and simulations, particularly for low failure probabilities (around 10-4), making Monte Carlo simulations less accurate. The paper introduces Generative Adversarial Networks (GANs) as a solution to generate synthetic data to supplement existing examples. The study applies GANs to assess the reliability of steel portal-framed industrial buildings and evaluate the safety of this structural solution according to Eurocodes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用生成合成数据样本的 gan 对钢门式框架进行可靠性评估
本文探讨了结构工程中可靠性估算所面临的挑战,由于设计问题的随机性和规模特征不足,确定失效概率往往具有不确定性。目前的方法,如 EN 1990,缺乏足够的研究和模拟数据,尤其是低失效概率(约 10-4),使得蒙特卡罗模拟的准确性较低。本文介绍了生成对抗网络(GANs),作为生成合成数据以补充现有实例的解决方案。该研究应用 GANs 评估了门式钢结构工业建筑的可靠性,并根据欧洲规范评估了这种结构解决方案的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Reliability-based Allowances of Corrosion Losses for Weathering Steel Bridges Failure mode and load prediction of steel bridge girders through 3D laser scanning and machine learning methods ‘Robinson’ Pedestrian Bridge in Budapest, Hungary Cable-stayed footbridge in Lover Vítkovice Area-DOV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1