Arman Daliri, Roghaye Sadeghi, Neda Sedighian, Abbas Karimi, Javad Mohammadzadeh
{"title":"Heptagonal Reinforcement Learning (HRL): a novel algorithm for early prevention of non-sinus cardiac arrhythmia","authors":"Arman Daliri, Roghaye Sadeghi, Neda Sedighian, Abbas Karimi, Javad Mohammadzadeh","doi":"10.1007/s12652-024-04776-0","DOIUrl":null,"url":null,"abstract":"<p>There have been many connections between medical science and artificial intelligence in recent years. Many problems arise with the integrity of communication. Cardiac arrhythmia, carried out using artificial intelligence methods, is one of the most dangerous diseases in the field of prevention. Topics introduced in artificial intelligence are the automatic selection of balancing and classification algorithms. In this study, metrics for machine learning algorithm selection are presented. The first problem is the problem of choosing the best balancing algorithm to balance the data sets, introduced as triangle rate (TR). The second issue to be studied is selecting the best automatic classification algorithm. The third action was to use a scoring algorithm to predict sinus and non-sinus arrhythmias. The heptagonal reinforcement learning (HRL) achieved results competitive with standard algorithms by combining three types of algorithms. The data used in this study was a 12-lead electrocardiogram (ECG) database of arrhythmias. The number of patients examined in this dataset is 10,646. The HRL algorithm has improved the previous algorithms by 5%, achieving 86% cardiac arrhythmia prediction.</p>","PeriodicalId":14959,"journal":{"name":"Journal of Ambient Intelligence and Humanized Computing","volume":"181 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Humanized Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12652-024-04776-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
There have been many connections between medical science and artificial intelligence in recent years. Many problems arise with the integrity of communication. Cardiac arrhythmia, carried out using artificial intelligence methods, is one of the most dangerous diseases in the field of prevention. Topics introduced in artificial intelligence are the automatic selection of balancing and classification algorithms. In this study, metrics for machine learning algorithm selection are presented. The first problem is the problem of choosing the best balancing algorithm to balance the data sets, introduced as triangle rate (TR). The second issue to be studied is selecting the best automatic classification algorithm. The third action was to use a scoring algorithm to predict sinus and non-sinus arrhythmias. The heptagonal reinforcement learning (HRL) achieved results competitive with standard algorithms by combining three types of algorithms. The data used in this study was a 12-lead electrocardiogram (ECG) database of arrhythmias. The number of patients examined in this dataset is 10,646. The HRL algorithm has improved the previous algorithms by 5%, achieving 86% cardiac arrhythmia prediction.
期刊介绍:
The purpose of JAIHC is to provide a high profile, leading edge forum for academics, industrial professionals, educators and policy makers involved in the field to contribute, to disseminate the most innovative researches and developments of all aspects of ambient intelligence and humanized computing, such as intelligent/smart objects, environments/spaces, and systems. The journal discusses various technical, safety, personal, social, physical, political, artistic and economic issues. The research topics covered by the journal are (but not limited to):
Pervasive/Ubiquitous Computing and Applications
Cognitive wireless sensor network
Embedded Systems and Software
Mobile Computing and Wireless Communications
Next Generation Multimedia Systems
Security, Privacy and Trust
Service and Semantic Computing
Advanced Networking Architectures
Dependable, Reliable and Autonomic Computing
Embedded Smart Agents
Context awareness, social sensing and inference
Multi modal interaction design
Ergonomics and product prototyping
Intelligent and self-organizing transportation networks & services
Healthcare Systems
Virtual Humans & Virtual Worlds
Wearables sensors and actuators