Hiroshi Tsukahara, Haodong Huang, Kiyonori Suzuki, Kanta Ono
{"title":"Formulation of energy loss due to magnetostriction to design ultraefficient soft magnets","authors":"Hiroshi Tsukahara, Haodong Huang, Kiyonori Suzuki, Kanta Ono","doi":"10.1038/s41427-024-00538-8","DOIUrl":null,"url":null,"abstract":"<p>The mechanism of energy loss due to magnetostriction in soft magnetic materials was analytically formulated, and our experiments validated this formulation. The viscosity of magnetic materials causes the resistive force acting on magnetic domain walls through strain due to magnetostriction, and magnetic energy is eventually dissipated by friction even without eddy currents. This energy loss mechanism explains the frequency dependence of the excess loss observed in the experiments, and the excess loss is dominated by the contribution of magnetostriction when the magnetostriction constant exceeds approximately 20 ppm. The random anisotropy model was extended by considering the effect of local magnetostriction as a correction to the magnetocrystalline anisotropy. The effect of magnetostriction was considerably suppressed by the exchange-averaging effect. The estimated effective random magnetoelastic anisotropy for nanocrystalline α-Fe reached as low as 18.6 J/m<sup>3</sup>, but this static effect could not explain the high excess loss at high frequencies observed in the experiments. The results of this research could provide new design criteria for high-performance soft magnetic materials based on low magnetostriction to reduce the excess loss.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"462 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41427-024-00538-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanism of energy loss due to magnetostriction in soft magnetic materials was analytically formulated, and our experiments validated this formulation. The viscosity of magnetic materials causes the resistive force acting on magnetic domain walls through strain due to magnetostriction, and magnetic energy is eventually dissipated by friction even without eddy currents. This energy loss mechanism explains the frequency dependence of the excess loss observed in the experiments, and the excess loss is dominated by the contribution of magnetostriction when the magnetostriction constant exceeds approximately 20 ppm. The random anisotropy model was extended by considering the effect of local magnetostriction as a correction to the magnetocrystalline anisotropy. The effect of magnetostriction was considerably suppressed by the exchange-averaging effect. The estimated effective random magnetoelastic anisotropy for nanocrystalline α-Fe reached as low as 18.6 J/m3, but this static effect could not explain the high excess loss at high frequencies observed in the experiments. The results of this research could provide new design criteria for high-performance soft magnetic materials based on low magnetostriction to reduce the excess loss.
期刊介绍:
NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.