Kaixin Ding, Ying Shan, Lichun Wang, Guokui Tian, Fengyun Li, Haiyan Wang, Ze Pang, Yang Pan, Hui Jiang
{"title":"Physiological response of potato leaves to uniconazole under drought stress during the tuber expansion period","authors":"Kaixin Ding, Ying Shan, Lichun Wang, Guokui Tian, Fengyun Li, Haiyan Wang, Ze Pang, Yang Pan, Hui Jiang","doi":"10.1007/s13580-024-00612-8","DOIUrl":null,"url":null,"abstract":"<p>Long-term drought stress has irreversible effects on potato growth and reduces yield. Uniconazole can alleviate the growth inhibition and plant damage resulting from drought stress. In the current study, the effects of drought stress on the leaf physiology and yield of two potato varieties (Kexin No. 1, drought-tolerant, and Atlantic, drought-sensitive) and the ability of uniconazole to promote growth and productivity under drought conditions were studied. The results showed that uniconazole could effectively alleviate the degradation of chlorophyll under drought stress, and drought significantly inhibited the photosynthetic rate (<i>P</i><sub>n</sub>), transpiration rate (<i>T</i><sub>r</sub>), stomatal conductance (<i>G</i><sub>s</sub>), and intercellular CO<sub>2</sub> concentration (<i>C</i><sub>i</sub>) of the leaves of the two potato varieties. Exogenous uniconazole effectively alleviated the inhibitory effect of drought on the photosynthetic parameters of potato leaves. Compared with drought treatment, uniconazole treatment reduced malondialdehyde (MDA), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and superoxide anion (O<sub>2</sub><sup>−</sup>) production in the leaves of Kexin No. 1 and Atlantic plants and increased the activity of antioxidant enzymes, alleviating the loss of yield factors caused by drought stress. In addition, the antioxidant enzyme activity and nonenzymatic antioxidant activity of both varieties increased in response to drought stress. Drought + uniconazole treatment further increased the contents of the osmotic adjustment substances soluble protein and proline and ascorbate-glutathione (ASA-GSH) cycle products and substrates, including ascorbic acid (ASA), dehydroascorbate (DHA), glutathione (GSH) and oxidized glutathione (GSSG). Drought + uniconazole treatment also increased the ratio of ASA/DHA and GSH/GSSG in the two potato varieties under drought stress. This enhancement elevated the levels of reducing power and antioxidant capacity in the leaves, thus reducing the impacts of reactive oxygen species on the cell membrane. The drought-tolerant variety Kexin No. 1 exhibited a greater recovery than did the drought-sensitive variety Atlantic. These results provide a valuable reference for understanding the mechanism of drought resistance in potato plants and the effectiveness of uniconazole in alleviating drought-induced stress.</p>","PeriodicalId":13123,"journal":{"name":"Horticulture Environment and Biotechnology","volume":"253 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Environment and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s13580-024-00612-8","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Long-term drought stress has irreversible effects on potato growth and reduces yield. Uniconazole can alleviate the growth inhibition and plant damage resulting from drought stress. In the current study, the effects of drought stress on the leaf physiology and yield of two potato varieties (Kexin No. 1, drought-tolerant, and Atlantic, drought-sensitive) and the ability of uniconazole to promote growth and productivity under drought conditions were studied. The results showed that uniconazole could effectively alleviate the degradation of chlorophyll under drought stress, and drought significantly inhibited the photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), and intercellular CO2 concentration (Ci) of the leaves of the two potato varieties. Exogenous uniconazole effectively alleviated the inhibitory effect of drought on the photosynthetic parameters of potato leaves. Compared with drought treatment, uniconazole treatment reduced malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide anion (O2−) production in the leaves of Kexin No. 1 and Atlantic plants and increased the activity of antioxidant enzymes, alleviating the loss of yield factors caused by drought stress. In addition, the antioxidant enzyme activity and nonenzymatic antioxidant activity of both varieties increased in response to drought stress. Drought + uniconazole treatment further increased the contents of the osmotic adjustment substances soluble protein and proline and ascorbate-glutathione (ASA-GSH) cycle products and substrates, including ascorbic acid (ASA), dehydroascorbate (DHA), glutathione (GSH) and oxidized glutathione (GSSG). Drought + uniconazole treatment also increased the ratio of ASA/DHA and GSH/GSSG in the two potato varieties under drought stress. This enhancement elevated the levels of reducing power and antioxidant capacity in the leaves, thus reducing the impacts of reactive oxygen species on the cell membrane. The drought-tolerant variety Kexin No. 1 exhibited a greater recovery than did the drought-sensitive variety Atlantic. These results provide a valuable reference for understanding the mechanism of drought resistance in potato plants and the effectiveness of uniconazole in alleviating drought-induced stress.
期刊介绍:
Horticulture, Environment, and Biotechnology (HEB) is the official journal of the Korean Society for Horticultural Science, was launched in 1965 as the "Journal of Korean Society for Horticultural Science".
HEB is an international journal, published in English, bimonthly on the last day of even number months, and indexed in Biosys Preview, SCIE, and CABI.
The journal is devoted for the publication of original research papers and review articles related to vegetables, fruits, ornamental and herbal plants, and covers all aspects of physiology, molecular biology, biotechnology, protected cultivation, postharvest technology, and research in plants related to environment.