{"title":"SDP-Based Battery Charging Controller for Hybrid Electric Vehicles in Preparation for Zero-Emission Zone Drives","authors":"Jemin Woo, Seohee Han, Changsun Ahn","doi":"10.1007/s40684-024-00609-9","DOIUrl":null,"url":null,"abstract":"<p>The zero-emission zone (ZEZ) is a recent environmental regulation that restricts the entry of internal combustion engine vehicles. In a ZEZ, hybrid electric vehicles (HEVs) are allowed but must operate in full-electric mode. Therefore, it is important for HEVs entering a ZEZ to have a sufficiently charged battery. This study presents a stochastic dynamic programming-based power management strategy for optimizing HEV charging in preparation for ZEZ drives. Stochastic dynamic programming models the driver's intentions as a Markov chain and designs optimal controllers by incorporating future probabilistic information up to an infinite time horizon. Furthermore, the proposed controller takes into account the remaining distance to the zero-emission zone, enabling efficient charging. Compared to stochastic dynamic programming strategies that do not consider the remaining distance, the proposed power management strategy improves the equivalent fuel efficiency by up to about 21%.</p>","PeriodicalId":14238,"journal":{"name":"International Journal of Precision Engineering and Manufacturing-Green Technology","volume":"6 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Precision Engineering and Manufacturing-Green Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40684-024-00609-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The zero-emission zone (ZEZ) is a recent environmental regulation that restricts the entry of internal combustion engine vehicles. In a ZEZ, hybrid electric vehicles (HEVs) are allowed but must operate in full-electric mode. Therefore, it is important for HEVs entering a ZEZ to have a sufficiently charged battery. This study presents a stochastic dynamic programming-based power management strategy for optimizing HEV charging in preparation for ZEZ drives. Stochastic dynamic programming models the driver's intentions as a Markov chain and designs optimal controllers by incorporating future probabilistic information up to an infinite time horizon. Furthermore, the proposed controller takes into account the remaining distance to the zero-emission zone, enabling efficient charging. Compared to stochastic dynamic programming strategies that do not consider the remaining distance, the proposed power management strategy improves the equivalent fuel efficiency by up to about 21%.
期刊介绍:
Green Technology aspects of precision engineering and manufacturing are becoming ever more important in current and future technologies. New knowledge in this field will aid in the advancement of various technologies that are needed to gain industrial competitiveness. To this end IJPEM - Green Technology aims to disseminate relevant developments and applied research works of high quality to the international community through efficient and rapid publication. IJPEM - Green Technology covers novel research contributions in all aspects of "Green" precision engineering and manufacturing.