CNC: A lightweight architecture for Binary Ring-LWE based PQC

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Microprocessors and Microsystems Pub Date : 2024-03-26 DOI:10.1016/j.micpro.2024.105044
Shaik Ahmadunnisa, Sudha Ellison Mathe
{"title":"CNC: A lightweight architecture for Binary Ring-LWE based PQC","authors":"Shaik Ahmadunnisa,&nbsp;Sudha Ellison Mathe","doi":"10.1016/j.micpro.2024.105044","DOIUrl":null,"url":null,"abstract":"<div><p>In lattice-based cryptography, Ring Learning with Errors (RLWE) is a computationally hard cryptographic problem, comprising three basic mechanisms i.e., key generation, encryption, and decryption. Binary Ring Learning with Error (BRLWE), a new variant of RLWE has been proposed recently to reduce the key size and computational complexity compared to previous RLWE-based schemes. Based on this BRLWE scheme, efficient hardware architectures have been obtained in recent works for lightweight applications. The key operation involved in this scheme is <span><math><mrow><mi>A</mi><mi>B</mi><mo>+</mo><mi>C</mi></mrow></math></span> , where <span><math><mi>A</mi></math></span> and <span><math><mi>C</mi></math></span> are integer polynomials and <span><math><mi>B</mi></math></span> is a binary polynomial. This paper proposes an efficient hardware architecture for BRLWE-based scheme targeted for lightweight applications. The architecture computes the arithmetic operation <span><math><mrow><mi>A</mi><mi>B</mi><mo>+</mo><mi>C</mi></mrow></math></span>, which includes polynomial multiplication and addition over the polynomial ring <span><math><mrow><msub><mrow><mi>Z</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>/</mo><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. The proposed architecture is applied in two conditions, fixed and variable values of <span><math><mi>q</mi></math></span>. Experimental results show the architecture proposed has 50% less Area-Delay Product (ADP) and 20% less Power-Delay Product (PDP) compared to the recently reported work for <span><math><mrow><mi>n</mi><mo>=</mo><mn>256</mn></mrow></math></span>.</p></div>","PeriodicalId":49815,"journal":{"name":"Microprocessors and Microsystems","volume":"106 ","pages":"Article 105044"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microprocessors and Microsystems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141933124000395","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

In lattice-based cryptography, Ring Learning with Errors (RLWE) is a computationally hard cryptographic problem, comprising three basic mechanisms i.e., key generation, encryption, and decryption. Binary Ring Learning with Error (BRLWE), a new variant of RLWE has been proposed recently to reduce the key size and computational complexity compared to previous RLWE-based schemes. Based on this BRLWE scheme, efficient hardware architectures have been obtained in recent works for lightweight applications. The key operation involved in this scheme is AB+C , where A and C are integer polynomials and B is a binary polynomial. This paper proposes an efficient hardware architecture for BRLWE-based scheme targeted for lightweight applications. The architecture computes the arithmetic operation AB+C, which includes polynomial multiplication and addition over the polynomial ring Zq/(xn+1). The proposed architecture is applied in two conditions, fixed and variable values of q. Experimental results show the architecture proposed has 50% less Area-Delay Product (ADP) and 20% less Power-Delay Product (PDP) compared to the recently reported work for n=256.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CNC:基于二进制环-LWE 的 PQC 轻量级架构
在基于网格的密码学中,有误环学习(RLWE)是一个计算难度很大的密码学问题,包括三个基本机制,即密钥生成、加密和解密。二进制环形有误学习(BRLWE)是 RLWE 的一种新变体,与之前基于 RLWE 的方案相比,它可以减少密钥大小,降低计算复杂度。基于这种 BRLWE 方案,最近的研究为轻量级应用提供了高效的硬件架构。该方案涉及的密钥运算为 AB+C ,其中 A 和 C 为整数多项式,B 为二元多项式。本文针对轻量级应用,为基于 BRLWE 的方案提出了一种高效的硬件架构。该架构可计算算术运算 AB+C,包括多项式环 Zq/(xn+1)上的多项式乘法和加法。实验结果表明,与最近报道的 n=256 的工作相比,该架构的面积延迟积(ADP)减少了 50%,功率延迟积(PDP)减少了 20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microprocessors and Microsystems
Microprocessors and Microsystems 工程技术-工程:电子与电气
CiteScore
6.90
自引率
3.80%
发文量
204
审稿时长
172 days
期刊介绍: Microprocessors and Microsystems: Embedded Hardware Design (MICPRO) is a journal covering all design and architectural aspects related to embedded systems hardware. This includes different embedded system hardware platforms ranging from custom hardware via reconfigurable systems and application specific processors to general purpose embedded processors. Special emphasis is put on novel complex embedded architectures, such as systems on chip (SoC), systems on a programmable/reconfigurable chip (SoPC) and multi-processor systems on a chip (MPSoC), as well as, their memory and communication methods and structures, such as network-on-chip (NoC). Design automation of such systems including methodologies, techniques, flows and tools for their design, as well as, novel designs of hardware components fall within the scope of this journal. Novel cyber-physical applications that use embedded systems are also central in this journal. While software is not in the main focus of this journal, methods of hardware/software co-design, as well as, application restructuring and mapping to embedded hardware platforms, that consider interplay between software and hardware components with emphasis on hardware, are also in the journal scope.
期刊最新文献
Editorial Board Algorithms for scheduling CNNs on multicore MCUs at the neuron and layer levels Low-cost constant time signed digit selection for most significant bit first multiplication An adaptive binary classifier for highly imbalanced datasets on the Edge Quality-driven design of deep neural network hardware accelerators for low power CPS and IoT applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1