{"title":"A real-time interception system for compromised frequency-hopping signal eavesdropping","authors":"Corentin Lavaud , Robin Gerzaguet , Matthieu Gautier , Olivier Berder , Erwan Nogues , Stephane Molton","doi":"10.1016/j.micpro.2025.105144","DOIUrl":null,"url":null,"abstract":"<div><div>In modern computing architectures, sensitive data (<em>red data</em>) is carried out in the same processing units as encrypted data (<em>black data</em>). Due to leaks (internal mixing, coupling …), this red data can be emitted in a legitimate radio transmission through a so-called telecom side-channel. This new type of side-channel creates an important threat as it can be passively and remotely processed by a dedicated interception system. This threat becomes even more concerning within the context of the Internet of Things, as the use of low-cost components leads to increased leaks. This paper addresses telecom side-channels on frequency-hopping signals, that are harsh to eavesdrop due to their sporadic nature in both time and frequency domains. To that goal, a wideband interception system is proposed, able to intercept frequency-hopping signals in real time and to extract sensitive red data from it. The system relies on software-defined radios and leverages both hardware and software resources to process a 200MHz bandwidth in real time. The proposed architecture is capable of detecting jumps on the order of <span><math><mrow><mn>20</mn><mi>μ</mi><mi>s</mi></mrow></math></span> and can therefore track 50,000 jumps per second across 1,024 channels. Finally, the criticality of telecom side-channels in Bluetooth communications is demonstrated through real interception on several microcontroller chips.</div></div>","PeriodicalId":49815,"journal":{"name":"Microprocessors and Microsystems","volume":"113 ","pages":"Article 105144"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microprocessors and Microsystems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141933125000122","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
In modern computing architectures, sensitive data (red data) is carried out in the same processing units as encrypted data (black data). Due to leaks (internal mixing, coupling …), this red data can be emitted in a legitimate radio transmission through a so-called telecom side-channel. This new type of side-channel creates an important threat as it can be passively and remotely processed by a dedicated interception system. This threat becomes even more concerning within the context of the Internet of Things, as the use of low-cost components leads to increased leaks. This paper addresses telecom side-channels on frequency-hopping signals, that are harsh to eavesdrop due to their sporadic nature in both time and frequency domains. To that goal, a wideband interception system is proposed, able to intercept frequency-hopping signals in real time and to extract sensitive red data from it. The system relies on software-defined radios and leverages both hardware and software resources to process a 200MHz bandwidth in real time. The proposed architecture is capable of detecting jumps on the order of and can therefore track 50,000 jumps per second across 1,024 channels. Finally, the criticality of telecom side-channels in Bluetooth communications is demonstrated through real interception on several microcontroller chips.
期刊介绍:
Microprocessors and Microsystems: Embedded Hardware Design (MICPRO) is a journal covering all design and architectural aspects related to embedded systems hardware. This includes different embedded system hardware platforms ranging from custom hardware via reconfigurable systems and application specific processors to general purpose embedded processors. Special emphasis is put on novel complex embedded architectures, such as systems on chip (SoC), systems on a programmable/reconfigurable chip (SoPC) and multi-processor systems on a chip (MPSoC), as well as, their memory and communication methods and structures, such as network-on-chip (NoC).
Design automation of such systems including methodologies, techniques, flows and tools for their design, as well as, novel designs of hardware components fall within the scope of this journal. Novel cyber-physical applications that use embedded systems are also central in this journal. While software is not in the main focus of this journal, methods of hardware/software co-design, as well as, application restructuring and mapping to embedded hardware platforms, that consider interplay between software and hardware components with emphasis on hardware, are also in the journal scope.