Rubén Nieto , Felipe Machado , Jesús Fernández-Conde , David Lobato , José M. Cañas
{"title":"Open-source ROS-based simulation for verification of FPGA robotics applications","authors":"Rubén Nieto , Felipe Machado , Jesús Fernández-Conde , David Lobato , José M. Cañas","doi":"10.1016/j.micpro.2025.105143","DOIUrl":null,"url":null,"abstract":"<div><div>FPGAs are increasingly incorporated in many high-end robotics applications, often involving computer vision and motor control. However, functional verification of FPGA designs is labor-intensive, time-consuming, and consequently expensive. Moreover, validation of complex systems, such as robots, poses even further challenges because neither the external interactions can be easily modeled with traditional testbenches nor the robot’s response can be adequately observed and ascertained. This work presents a new methodology that validates the robot’s behavior in a realistic simulated environment before transferring the design to the physical robot and the onboard FPGA. This methodology allows integral, fast, and flexible debugging cycles of robotics applications by integrating the functional simulation of the processing unit (FPGA) with the simulation of the robot, its environment, and their mutual interconnections. The Verilator simulation tool is used for fast Verilog/SystemVerilog verification and simulation. ROS, the standard robotics middleware, and Gazebo 3D robotics simulator are used for realistic robot simulation, including a robust physics engine. We have implemented several open-source software extensions to interconnect the Verilog circuit with the simulated ROS sensors and actuators. This methodology’s utility and correctness have been assessed by developing a complete proof-of-concept FPGA-based robotics application in which a commercial robot follows a colored object using its onboard camera and differential drive motors. This work establishes the foundations for developing and testing complex robot FPGA-based modules more efficiently and flexibly.</div></div>","PeriodicalId":49815,"journal":{"name":"Microprocessors and Microsystems","volume":"113 ","pages":"Article 105143"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microprocessors and Microsystems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141933125000110","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
FPGAs are increasingly incorporated in many high-end robotics applications, often involving computer vision and motor control. However, functional verification of FPGA designs is labor-intensive, time-consuming, and consequently expensive. Moreover, validation of complex systems, such as robots, poses even further challenges because neither the external interactions can be easily modeled with traditional testbenches nor the robot’s response can be adequately observed and ascertained. This work presents a new methodology that validates the robot’s behavior in a realistic simulated environment before transferring the design to the physical robot and the onboard FPGA. This methodology allows integral, fast, and flexible debugging cycles of robotics applications by integrating the functional simulation of the processing unit (FPGA) with the simulation of the robot, its environment, and their mutual interconnections. The Verilator simulation tool is used for fast Verilog/SystemVerilog verification and simulation. ROS, the standard robotics middleware, and Gazebo 3D robotics simulator are used for realistic robot simulation, including a robust physics engine. We have implemented several open-source software extensions to interconnect the Verilog circuit with the simulated ROS sensors and actuators. This methodology’s utility and correctness have been assessed by developing a complete proof-of-concept FPGA-based robotics application in which a commercial robot follows a colored object using its onboard camera and differential drive motors. This work establishes the foundations for developing and testing complex robot FPGA-based modules more efficiently and flexibly.
期刊介绍:
Microprocessors and Microsystems: Embedded Hardware Design (MICPRO) is a journal covering all design and architectural aspects related to embedded systems hardware. This includes different embedded system hardware platforms ranging from custom hardware via reconfigurable systems and application specific processors to general purpose embedded processors. Special emphasis is put on novel complex embedded architectures, such as systems on chip (SoC), systems on a programmable/reconfigurable chip (SoPC) and multi-processor systems on a chip (MPSoC), as well as, their memory and communication methods and structures, such as network-on-chip (NoC).
Design automation of such systems including methodologies, techniques, flows and tools for their design, as well as, novel designs of hardware components fall within the scope of this journal. Novel cyber-physical applications that use embedded systems are also central in this journal. While software is not in the main focus of this journal, methods of hardware/software co-design, as well as, application restructuring and mapping to embedded hardware platforms, that consider interplay between software and hardware components with emphasis on hardware, are also in the journal scope.