{"title":"Can digital twin efforts shape microorganism-based alternative food?","authors":"Mohamed Helmy , Hosam Elhalis , Md Mamunur Rashid , Kumar Selvarajoo","doi":"10.1016/j.copbio.2024.103115","DOIUrl":null,"url":null,"abstract":"<div><p>With the continuous increment in global population growth, compounded by post-pandemic food security challenges due to labor shortages, effects of climate change, political conflicts, limited land for agriculture, and carbon emissions control, addressing food production in a sustainable manner for future generations is critical. Microorganisms are potential alternative food sources that can help close the gap in food production. For the development of more efficient and yield-enhancing products, it is necessary to have a better understanding on the underlying regulatory molecular pathways of microbial growth. Nevertheless, as microbes are regulated at multiomics scales, current research focusing on single omics (genomics, proteomics, or metabolomics) independently is inadequate for optimizing growth and product output. Here, we discuss digital twin (DT) approaches that integrate systems biology and artificial intelligence in analyzing multiomics datasets to yield a microbial replica model for <em>in silico</em> testing before production. DT models can thus provide a holistic understanding of microbial growth, metabolite biosynthesis mechanisms, as well as identifying crucial production bottlenecks. Our argument, therefore, is to support the development of novel DT models that can potentially revolutionize microorganism-based alternative food production efficiency.</p></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"87 ","pages":"Article 103115"},"PeriodicalIF":7.1000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095816692400051X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
With the continuous increment in global population growth, compounded by post-pandemic food security challenges due to labor shortages, effects of climate change, political conflicts, limited land for agriculture, and carbon emissions control, addressing food production in a sustainable manner for future generations is critical. Microorganisms are potential alternative food sources that can help close the gap in food production. For the development of more efficient and yield-enhancing products, it is necessary to have a better understanding on the underlying regulatory molecular pathways of microbial growth. Nevertheless, as microbes are regulated at multiomics scales, current research focusing on single omics (genomics, proteomics, or metabolomics) independently is inadequate for optimizing growth and product output. Here, we discuss digital twin (DT) approaches that integrate systems biology and artificial intelligence in analyzing multiomics datasets to yield a microbial replica model for in silico testing before production. DT models can thus provide a holistic understanding of microbial growth, metabolite biosynthesis mechanisms, as well as identifying crucial production bottlenecks. Our argument, therefore, is to support the development of novel DT models that can potentially revolutionize microorganism-based alternative food production efficiency.
期刊介绍:
Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time.
As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows.
COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.