Metal matrix composites for sustainable products: A review on current development

P K Gupta, Alok Kumar Trivedi, M K Gupta, Manish Dixit
{"title":"Metal matrix composites for sustainable products: A review on current development","authors":"P K Gupta, Alok Kumar Trivedi, M K Gupta, Manish Dixit","doi":"10.1177/14644207241238197","DOIUrl":null,"url":null,"abstract":"In recent decades, with the increase in demand for lightweight and high-strength materials for engineering applications, metal matrix composites (MMCs) are found to be a better replacement for conventional materials owing to their excellent characteristics such as high strength-to-weight ratio, high strength and stiffness, high thermal conductivity and low coefficient of thermal expansion. MMCs have been used in various applications such as automobile parts, aerospace and aircraft parts, jet engines, satellites, missiles, military, heavy constructions, NASA space shuttle, bridges, biomedical applications (i.e., medical devices, implants and surgical instruments) and so on. Extensive research has been carried out on the performance of MMCs for the development of sustainable products, which motivated us to review the current development in the processing, properties and applications of these composites. This work presents a systematic review of the mechanical properties (tensile strength and modulus, flexural strength and modulus, impact strength and hardness) of MMCs. Further, it comprises the processing techniques, strengthening mechanism and applications of MMCs along with the recommendations for future work and challenges. The mechanical performances of MMCs are found to be highly influenced by the properties of reinforcement and matrices, interfacial bonding, dispersion of particles into matrix, shape and size of particles, percentage content of particles and processing techniques. This review study suggests that MMCs have great potential to efficiently fulfill the present and future demands.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"14 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14644207241238197","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent decades, with the increase in demand for lightweight and high-strength materials for engineering applications, metal matrix composites (MMCs) are found to be a better replacement for conventional materials owing to their excellent characteristics such as high strength-to-weight ratio, high strength and stiffness, high thermal conductivity and low coefficient of thermal expansion. MMCs have been used in various applications such as automobile parts, aerospace and aircraft parts, jet engines, satellites, missiles, military, heavy constructions, NASA space shuttle, bridges, biomedical applications (i.e., medical devices, implants and surgical instruments) and so on. Extensive research has been carried out on the performance of MMCs for the development of sustainable products, which motivated us to review the current development in the processing, properties and applications of these composites. This work presents a systematic review of the mechanical properties (tensile strength and modulus, flexural strength and modulus, impact strength and hardness) of MMCs. Further, it comprises the processing techniques, strengthening mechanism and applications of MMCs along with the recommendations for future work and challenges. The mechanical performances of MMCs are found to be highly influenced by the properties of reinforcement and matrices, interfacial bonding, dispersion of particles into matrix, shape and size of particles, percentage content of particles and processing techniques. This review study suggests that MMCs have great potential to efficiently fulfill the present and future demands.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于可持续产品的金属基复合材料:当前发展综述
近几十年来,随着工程应用领域对轻质高强材料需求的增加,金属基复合材料(MMC)因其高强度重量比、高强度和刚度、高导热性和低热膨胀系数等优良特性,被认为是传统材料的最佳替代品。MMC 已被广泛应用于汽车零部件、航空航天和飞机零部件、喷气发动机、卫星、导弹、军事、重型建筑、美国宇航局航天飞机、桥梁、生物医学应用(即医疗设备、植入物和手术器械)等领域。为了开发可持续产品,人们对 MMC 的性能进行了广泛的研究,这促使我们回顾这些复合材料在加工、性能和应用方面的发展现状。本研究系统回顾了多孔金属复合材料的机械性能(拉伸强度和模量、弯曲强度和模量、冲击强度和硬度)。此外,它还包括加工技术、强化机制和 MMC 的应用,以及对未来工作和挑战的建议。研究发现,增强材料和基体的性能、界面结合、颗粒在基体中的分散情况、颗粒的形状和尺寸、颗粒的百分比含量以及加工技术都会对间苯二甲酸甲酯的机械性能产生很大影响。本综述研究表明,间苯二甲酸甲酯具有巨大潜力,可有效满足当前和未来的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
8.30%
发文量
166
审稿时长
3 months
期刊介绍: The Journal of Materials: Design and Applications covers the usage and design of materials for application in an engineering context. The materials covered include metals, ceramics, and composites, as well as engineering polymers. "The Journal of Materials Design and Applications is dedicated to publishing papers of the highest quality, in a timely fashion, covering a variety of important areas in materials technology. The Journal''s publishers have a wealth of publishing expertise and ensure that authors are given exemplary service. Every attention is given to publishing the papers as quickly as possible. The Journal has an excellent international reputation, with a corresponding international Editorial Board from a large number of different materials areas and disciplines advising the Editor." Professor Bill Banks - University of Strathclyde, UK This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Quantification of delamination resistance data of FRP composites and its limits Thick-wire GMAW for fusion welding of high-strength steels Evaluation of the performance enhancement of asphalt concrete via graphene oxide incorporation: A multi-test approach Recent advancements in self-healing materials and their application in coating industry Investigations on microstructural, mechanical, and tribological properties of Al-Cu-Ni alloy in cast, heat-treated, and strain-softened conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1