Renormalized stress-energy tensor on global anti-de Sitter space-time with Robin boundary conditions

IF 2.1 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS General Relativity and Gravitation Pub Date : 2024-03-28 DOI:10.1007/s10714-024-03224-w
Thomas Morley, Sivakumar Namasivayam, Elizabeth Winstanley
{"title":"Renormalized stress-energy tensor on global anti-de Sitter space-time with Robin boundary conditions","authors":"Thomas Morley, Sivakumar Namasivayam, Elizabeth Winstanley","doi":"10.1007/s10714-024-03224-w","DOIUrl":null,"url":null,"abstract":"<p>We study the renormalized stress-energy tensor (RSET) for a massless, conformally coupled scalar field on global anti-de Sitter space-time in four dimensions. Robin (mixed) boundary conditions are applied to the scalar field. We compute both the vacuum and thermal expectation values of the RSET. The vacuum RSET is a multiple of the space-time metric when either Dirichlet or Neumann boundary conditions are applied. Imposing Robin boundary conditions breaks the maximal symmetry of the vacuum state and results in an RSET whose components with mixed indices have their maximum (or maximum magnitude) at the space-time origin. The value of this maximum depends on the boundary conditions. We find similar behaviour for thermal states. As the temperature decreases, thermal expectation values of the RSET approach those for vacuum states and their values depend strongly on the boundary conditions. As the temperature increases, the values of the RSET components tend to profiles which are the same for all boundary conditions. We also find, for both vacuum and thermal states, that the RSET on the space-time boundary is independent of the boundary conditions and determined entirely by the trace anomaly.</p>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s10714-024-03224-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the renormalized stress-energy tensor (RSET) for a massless, conformally coupled scalar field on global anti-de Sitter space-time in four dimensions. Robin (mixed) boundary conditions are applied to the scalar field. We compute both the vacuum and thermal expectation values of the RSET. The vacuum RSET is a multiple of the space-time metric when either Dirichlet or Neumann boundary conditions are applied. Imposing Robin boundary conditions breaks the maximal symmetry of the vacuum state and results in an RSET whose components with mixed indices have their maximum (or maximum magnitude) at the space-time origin. The value of this maximum depends on the boundary conditions. We find similar behaviour for thermal states. As the temperature decreases, thermal expectation values of the RSET approach those for vacuum states and their values depend strongly on the boundary conditions. As the temperature increases, the values of the RSET components tend to profiles which are the same for all boundary conditions. We also find, for both vacuum and thermal states, that the RSET on the space-time boundary is independent of the boundary conditions and determined entirely by the trace anomaly.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有罗宾边界条件的全局反德西特时空上的重正化应力能量张量
我们研究了四维全局反德西特时空中无质量、保形耦合标量场的重正化应力能量张量(RSET)。罗宾(混合)边界条件适用于标量场。我们计算了 RSET 的真空期望值和热期望值。当应用迪里夏特或诺伊曼边界条件时,真空 RSET 是时空度量的倍数。施加罗宾边界条件会打破真空态的最大对称性,导致 RSET 的混合指数成分在时空原点具有最大值(或最大幅值)。这个最大值取决于边界条件。我们发现热状态也有类似的表现。随着温度的降低,RSET 的热期望值接近真空态的期望值,其值与边界条件密切相关。随着温度的升高,RSET 分量的值趋向于在所有边界条件下都相同的曲线。我们还发现,无论是真空态还是热态,时空边界上的 RSET 都与边界条件无关,完全由痕量反常决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
General Relativity and Gravitation
General Relativity and Gravitation 物理-天文与天体物理
CiteScore
4.60
自引率
3.60%
发文量
136
审稿时长
3 months
期刊介绍: General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation. It welcomes in particular original articles on the following topics of current research: Analytical general relativity, including its interface with geometrical analysis Numerical relativity Theoretical and observational cosmology Relativistic astrophysics Gravitational waves: data analysis, astrophysical sources and detector science Extensions of general relativity Supergravity Gravitational aspects of string theory and its extensions Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations Quantum field theory in curved spacetime Non-commutative geometry and gravitation Experimental gravity, in particular tests of general relativity The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.
期刊最新文献
Localized chaos due to rotating shock waves in Kerr–AdS black holes and their ultraspinning version Elementary considerations on gravitational waves from hyperbolic encounters Approximating photon trajectories in spherically symmetric spacetimes Exponential correction to Friedmann equations Some remarks on Bardeen-AdS black hole surrounded by a fluid of strings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1