A. A. Piryazev, D. K. Sagdullina, I. E. Kuznetsov, A.F. Akhkiamova, M.V. Gapanovich, D. V. Anokhin, A. N. Zhivchikova, M. E. Sideltsev, E. D. Siaglova, M. M. Tepliakova, D. A. Ivanov, A. V. Akkuratov
{"title":"Magic of Solvents: Effect of Processing Solvents on Hole Transport in Organic Semiconductor Small Molecules","authors":"A. A. Piryazev, D. K. Sagdullina, I. E. Kuznetsov, A.F. Akhkiamova, M.V. Gapanovich, D. V. Anokhin, A. N. Zhivchikova, M. E. Sideltsev, E. D. Siaglova, M. M. Tepliakova, D. A. Ivanov, A. V. Akkuratov","doi":"10.1002/pssr.202400070","DOIUrl":null,"url":null,"abstract":"Organic semiconductor small molecules (SMs) attract much attention for the design of various emerging photovoltaic and optoelectronic devices. High charge transport characteristics of SMs are important prerequisite for achieving outstanding performance of electronics. Herein, we investigated four promising SMs in terms of modulating charge transport properties by solvent engineering. It is shown that the hole mobility of thin films based on push-pull SMs can be effectively enhanced by the replacement of chlorobenzene with environmentally preferable hexane without changing a molecular structure of the compounds. As a result, two to five times higher hole mobility was achieved for hexane-processed films that is attributed to formation of favorable nanoscale morphology of films. This effortless approach can be applied to other organic semiconductor materials to precisely control the morphology and improve their electrophysical properties.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"15 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi-Rapid Research Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssr.202400070","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Organic semiconductor small molecules (SMs) attract much attention for the design of various emerging photovoltaic and optoelectronic devices. High charge transport characteristics of SMs are important prerequisite for achieving outstanding performance of electronics. Herein, we investigated four promising SMs in terms of modulating charge transport properties by solvent engineering. It is shown that the hole mobility of thin films based on push-pull SMs can be effectively enhanced by the replacement of chlorobenzene with environmentally preferable hexane without changing a molecular structure of the compounds. As a result, two to five times higher hole mobility was achieved for hexane-processed films that is attributed to formation of favorable nanoscale morphology of films. This effortless approach can be applied to other organic semiconductor materials to precisely control the morphology and improve their electrophysical properties.
期刊介绍:
Physica status solidi (RRL) - Rapid Research Letters was designed to offer extremely fast publication times and is currently one of the fastest double peer-reviewed publication media in solid state and materials physics. Average times are 11 days from submission to first editorial decision, and 12 days from acceptance to online publication. It communicates important findings with a high degree of novelty and need for express publication, as well as other results of immediate interest to the solid-state physics and materials science community. Published Letters require approval by at least two independent reviewers.
The journal covers topics such as preparation, structure and simulation of advanced materials, theoretical and experimental investigations of the atomistic and electronic structure, optical, magnetic, superconducting, ferroelectric and other properties of solids, nanostructures and low-dimensional systems as well as device applications. Rapid Research Letters particularly invites papers from interdisciplinary and emerging new areas of research.