{"title":"Modelling and numerical analysis for rotatory friction welding of U75V steel rails","authors":"Han Zhang, Jiaqi Xie, Chang’an Li, Zhiming Zhu","doi":"10.1177/14644207241242019","DOIUrl":null,"url":null,"abstract":"This article presents a rotatory friction welding (RFW) method for U75V steel rail, aiming to mitigate challenges related to property discrepancies between the as-welded joints and the rail base metal (BM) and to narrow the heat-affected zone (HAZ) in conventional flash-butt welding (FBW) joints. A rotational intermediate plate is designed for rails with non-axisymmetric cross-sections, necessitating stationary during RFW. Advantages include achieving a relatively uniform welding heat input and maintaining the peak temperature of the contact interface near A<jats:sub>1</jats:sub>. To implement these concepts, a 2D finite element (FE) model for the RFW process of U75V rail steel rods was established and validated through experiments with identical process parameters. Microstructure predictions derived from continuous cooling transformation diagram confirm that ferrite microstructure is formed near A<jats:sub>1</jats:sub> through rail steel RFW. Subsequently, a 3D FE model for intermediate plate RFW steel rails is developed to explore appropriate process parameter combinations. A suitable process parameters combination was identified, ensuring the peak temperature of the majority model contact interface does not exceed A<jats:sub>1</jats:sub>, resulting in a 76.7% reduction in HAZ (from ∼50 to 11.66 mm), and axial shortening of 8.10 mm, a significant decrease compared to the usual burn-off (30–40 mm) during FBW. These findings underscore the efficacy of this innovative welding solution and emphasize the significance of simulation technology in process optimization.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"49 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14644207241242019","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents a rotatory friction welding (RFW) method for U75V steel rail, aiming to mitigate challenges related to property discrepancies between the as-welded joints and the rail base metal (BM) and to narrow the heat-affected zone (HAZ) in conventional flash-butt welding (FBW) joints. A rotational intermediate plate is designed for rails with non-axisymmetric cross-sections, necessitating stationary during RFW. Advantages include achieving a relatively uniform welding heat input and maintaining the peak temperature of the contact interface near A1. To implement these concepts, a 2D finite element (FE) model for the RFW process of U75V rail steel rods was established and validated through experiments with identical process parameters. Microstructure predictions derived from continuous cooling transformation diagram confirm that ferrite microstructure is formed near A1 through rail steel RFW. Subsequently, a 3D FE model for intermediate plate RFW steel rails is developed to explore appropriate process parameter combinations. A suitable process parameters combination was identified, ensuring the peak temperature of the majority model contact interface does not exceed A1, resulting in a 76.7% reduction in HAZ (from ∼50 to 11.66 mm), and axial shortening of 8.10 mm, a significant decrease compared to the usual burn-off (30–40 mm) during FBW. These findings underscore the efficacy of this innovative welding solution and emphasize the significance of simulation technology in process optimization.
期刊介绍:
The Journal of Materials: Design and Applications covers the usage and design of materials for application in an engineering context. The materials covered include metals, ceramics, and composites, as well as engineering polymers.
"The Journal of Materials Design and Applications is dedicated to publishing papers of the highest quality, in a timely fashion, covering a variety of important areas in materials technology. The Journal''s publishers have a wealth of publishing expertise and ensure that authors are given exemplary service. Every attention is given to publishing the papers as quickly as possible. The Journal has an excellent international reputation, with a corresponding international Editorial Board from a large number of different materials areas and disciplines advising the Editor." Professor Bill Banks - University of Strathclyde, UK
This journal is a member of the Committee on Publication Ethics (COPE).