GDP nowcasting: A machine learning and remote sensing data-based approach for Bolivia

Osmar Bolivar
{"title":"GDP nowcasting: A machine learning and remote sensing data-based approach for Bolivia","authors":"Osmar Bolivar","doi":"10.1016/j.latcb.2024.100126","DOIUrl":null,"url":null,"abstract":"<div><p>This research introduces an innovative GDP nowcasting strategy tailored for developing countries, specifically addressing challenges related to limited data timeliness. The study centers on Bolivia, where the official monthly indicator of economic growth is released with a substantial delay of up to six months. The proposed nowcast estimates effectively narrow this gap from six to two months. This advancement is achieved through the integration of machine learning techniques with data comprising indicators from traditional sources and statistics derived from satellite imagery. The robustness of this approach is rigorously validated using various criteria, including performance comparisons with conventional econometric methods and sensitivity assessments to different feature sets. Beyond enhancing the understanding of Bolivia’s economic dynamics, this research establishes a framework for analogous analyses in regions grappling with information availability challenges.</p></div>","PeriodicalId":100867,"journal":{"name":"Latin American Journal of Central Banking","volume":"5 3","pages":"Article 100126"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666143824000085/pdfft?md5=5cbb7c166e4d9c9d461b52f57cc6942a&pid=1-s2.0-S2666143824000085-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latin American Journal of Central Banking","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666143824000085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research introduces an innovative GDP nowcasting strategy tailored for developing countries, specifically addressing challenges related to limited data timeliness. The study centers on Bolivia, where the official monthly indicator of economic growth is released with a substantial delay of up to six months. The proposed nowcast estimates effectively narrow this gap from six to two months. This advancement is achieved through the integration of machine learning techniques with data comprising indicators from traditional sources and statistics derived from satellite imagery. The robustness of this approach is rigorously validated using various criteria, including performance comparisons with conventional econometric methods and sensitivity assessments to different feature sets. Beyond enhancing the understanding of Bolivia’s economic dynamics, this research establishes a framework for analogous analyses in regions grappling with information availability challenges.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
国内生产总值预测:基于机器学习和遥感数据的玻利维亚方法
本研究介绍了一种专为发展中国家量身定制的创新型 GDP 实时预测策略,专门应对与数据及时性有限有关的挑战。研究以玻利维亚为中心,该国官方每月发布的经济增长指标延迟时间长达六个月。拟议的预报估算有效地将这一差距从 6 个月缩小到 2 个月。这一进步是通过将机器学习技术与数据(包括来自传统来源的指标和来自卫星图像的统计数据)相结合实现的。该方法的稳健性通过各种标准得到了严格验证,包括与传统计量经济学方法的性能比较以及对不同特征集的敏感性评估。除了加深对玻利维亚经济动态的了解,这项研究还为面临信息可用性挑战的地区建立了一个类似分析框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
期刊最新文献
The loan puzzle in Mexico Brazilian economy in the 2000’s: A tale of two recessions The effect of financial inclusion on economic and social indicators in Mexico Mitigating policies for pollutant emissions in a DSGE for the Brazilian economy Climate change and technology adoption with a large informal sector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1