Poot Julien, Buelens Pierre, Dekoninck Augustin, Rochez Gaëtan, Yans Johan
{"title":"Tracing the Eh–pH evolution of Cu–Pb–As–Zn supergene mineralization using detailed petrography in the Cap Garonne mineral deposit (Provence, France)","authors":"Poot Julien, Buelens Pierre, Dekoninck Augustin, Rochez Gaëtan, Yans Johan","doi":"10.1007/s00126-024-01258-3","DOIUrl":null,"url":null,"abstract":"<p>The supergene zone of the Cap Garonne mineral deposit (Provence, France) hosts one of the most remarkable mineralogy in the world with no less than 150 minerals, 16 of which are type locality. Such mineral diversity offers a detailed view of mineral and geochemical changes during weathering processes. The stratabound epigenetic primary mineralization occurs within a few meters-thick fluvial conglomerates resting above the Permian–Triassic transition and is probably related to Late Triassic–Early Jurassic hydrothermal events. The Cu–As mineralization in the lower part of the conglomerates is locally overlapped by a thin Pb–Zn-rich layer in the northern mine. The results show that the weathered part is significantly enriched in Cu, Pb, As, Zn, Ag, Ba, Sb, and Bi. The evolution of the supergene fluid is traced in an Eh–pH diagram by the succession of sulfides I (tennantite, galena), sulfides II (covellite), arsenates (olivenite), sulfates and sulfo-arsenates (brochantite, anglesite), and carbonates (malachite, azurite, cerussite). The primary sulfide oxidation acidified the host conglomerate and enabled the crystallization of secondary sulfides and arsenates. Efficient and rapid neutralization by the calcite cement of the host conglomerate and chlorite in the matrix caused successive precipitation of arsenates, sulfates, and carbonates. The supergene processes could be related to major periods of weathering in Western Europe (Early Cretaceous–Late Oligocene/Early Miocene). Erosion-prone periods may have contributed to the stripping of the Pb–Zn-rich layer in the southern mine.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"42 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralium Deposita","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00126-024-01258-3","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The supergene zone of the Cap Garonne mineral deposit (Provence, France) hosts one of the most remarkable mineralogy in the world with no less than 150 minerals, 16 of which are type locality. Such mineral diversity offers a detailed view of mineral and geochemical changes during weathering processes. The stratabound epigenetic primary mineralization occurs within a few meters-thick fluvial conglomerates resting above the Permian–Triassic transition and is probably related to Late Triassic–Early Jurassic hydrothermal events. The Cu–As mineralization in the lower part of the conglomerates is locally overlapped by a thin Pb–Zn-rich layer in the northern mine. The results show that the weathered part is significantly enriched in Cu, Pb, As, Zn, Ag, Ba, Sb, and Bi. The evolution of the supergene fluid is traced in an Eh–pH diagram by the succession of sulfides I (tennantite, galena), sulfides II (covellite), arsenates (olivenite), sulfates and sulfo-arsenates (brochantite, anglesite), and carbonates (malachite, azurite, cerussite). The primary sulfide oxidation acidified the host conglomerate and enabled the crystallization of secondary sulfides and arsenates. Efficient and rapid neutralization by the calcite cement of the host conglomerate and chlorite in the matrix caused successive precipitation of arsenates, sulfates, and carbonates. The supergene processes could be related to major periods of weathering in Western Europe (Early Cretaceous–Late Oligocene/Early Miocene). Erosion-prone periods may have contributed to the stripping of the Pb–Zn-rich layer in the southern mine.
期刊介绍:
The journal Mineralium Deposita introduces new observations, principles, and interpretations from the field of economic geology, including nonmetallic mineral deposits, experimental and applied geochemistry, with emphasis on mineral deposits. It offers short and comprehensive articles, review papers, brief original papers, scientific discussions and news, as well as reports on meetings of importance to mineral research. The emphasis is on high-quality content and form for all articles and on international coverage of subject matter.