A wireless stimulator system-on-chip with an optically writable ID for addressable cortical microimplants

IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Solid-state Electronics Pub Date : 2024-04-03 DOI:10.1016/j.sse.2024.108914
Chae-Eun Lee , Jong-Hyun Park , Joonyoung Lim , Chieun Choi , Yoon-Kyu Song
{"title":"A wireless stimulator system-on-chip with an optically writable ID for addressable cortical microimplants","authors":"Chae-Eun Lee ,&nbsp;Jong-Hyun Park ,&nbsp;Joonyoung Lim ,&nbsp;Chieun Choi ,&nbsp;Yoon-Kyu Song","doi":"10.1016/j.sse.2024.108914","DOIUrl":null,"url":null,"abstract":"<div><p>For a profound understanding of brain function and connectivity, there is an escalating need to cover expansive cortical areas. While external recording methods such as electroencephalography (EEG) are prevalent, direct bidirectional interaction with the neural network mandates implanted electrodes. Integrating all microimplant functionalities into a single integrated circuit (IC) increases design complexities. Thus, challenges in the intricacies of distributed system networking have frustrated the drive toward implant miniaturization. In this context, we introduce addressable microimplants equipped with gate oxide-based anti-fuse (AF) Chip-IDs activated by a photodiode (PD) array. This mechanism generates a binary ID code by selectively degrading the anti-fuse gate oxide, eliminating the need for I/O PADs. These ID-equipped wireless micro-implants are distributed over vast regions, enabling bidirectional neural interfacing through recording and stimulation. We successfully fabricated an 8-channel wireless microstimulator and a spike-sensor in 180 nm CMOS, demonstrating the efficacy of the 5-bit Chip-ID in real-time networking scenarios. The system draws power from RF electromagnetic waves, receiving 1.2 V and 1 mW, and employs amplitude modulation at a 900 MHz carrier frequency for data communication. The minimum amplitude detected for demodulation was 350 mV, regenerating a 1 MHz clock and 34-bit command data. When tested, the array of eight microstimulators responded distinctly based on sequential command parameters. This IC realized in TSMC 180 nm CMOS technology, occupies only a 1 mm<sup>2</sup> area.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"216 ","pages":"Article 108914"},"PeriodicalIF":1.4000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110124000637","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

For a profound understanding of brain function and connectivity, there is an escalating need to cover expansive cortical areas. While external recording methods such as electroencephalography (EEG) are prevalent, direct bidirectional interaction with the neural network mandates implanted electrodes. Integrating all microimplant functionalities into a single integrated circuit (IC) increases design complexities. Thus, challenges in the intricacies of distributed system networking have frustrated the drive toward implant miniaturization. In this context, we introduce addressable microimplants equipped with gate oxide-based anti-fuse (AF) Chip-IDs activated by a photodiode (PD) array. This mechanism generates a binary ID code by selectively degrading the anti-fuse gate oxide, eliminating the need for I/O PADs. These ID-equipped wireless micro-implants are distributed over vast regions, enabling bidirectional neural interfacing through recording and stimulation. We successfully fabricated an 8-channel wireless microstimulator and a spike-sensor in 180 nm CMOS, demonstrating the efficacy of the 5-bit Chip-ID in real-time networking scenarios. The system draws power from RF electromagnetic waves, receiving 1.2 V and 1 mW, and employs amplitude modulation at a 900 MHz carrier frequency for data communication. The minimum amplitude detected for demodulation was 350 mV, regenerating a 1 MHz clock and 34-bit command data. When tested, the array of eight microstimulators responded distinctly based on sequential command parameters. This IC realized in TSMC 180 nm CMOS technology, occupies only a 1 mm2 area.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于可寻址皮层微植入物的带有光学可写 ID 的无线刺激器片上系统
为了深入了解大脑的功能和连接性,覆盖广阔皮层区域的需求日益增长。虽然脑电图(EEG)等外部记录方法非常普遍,但与神经网络的直接双向互动需要植入电极。将所有微型植入功能集成到单个集成电路 (IC) 中会增加设计的复杂性。因此,分布式系统网络错综复杂的挑战阻碍了植入体微型化的进程。在这种情况下,我们推出了可寻址微植入体,它配备了由光电二极管(PD)阵列激活的基于氧化栅的防熔断(AF)芯片 ID。这种机制通过选择性降解抗熔断栅极氧化物来生成二进制 ID 代码,从而消除了对输入/输出 PAD 的需求。这些装有 ID 的无线微型植入体可分布在广大区域,通过记录和刺激实现双向神经接口。我们在 180 nm CMOS 上成功制造了一个 8 通道无线微刺激器和一个尖峰传感器,证明了 5 位芯片 ID 在实时联网场景中的功效。该系统从射频电磁波中获取能量,接收电压为 1.2 V,功率为 1 mW,采用 900 MHz 载波频率的振幅调制进行数据通信。解调时检测到的最小振幅为 350 mV,可再生 1 MHz 时钟和 34 位指令数据。测试时,由八个微刺激器组成的阵列根据顺序命令参数作出了不同的响应。该集成电路采用台积电 180 纳米 CMOS 技术实现,仅占地 1 平方毫米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solid-state Electronics
Solid-state Electronics 物理-工程:电子与电气
CiteScore
3.00
自引率
5.90%
发文量
212
审稿时长
3 months
期刊介绍: It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.
期刊最新文献
A computational study of AlScN-based ferroelectric tunnel junction Characterization of LDMOS down to cryogenic temperatures and modeling with PSPHV A multi-level cell for ultra-scaled STT-MRAM realized by back-hopping Temperature influence on experimental analog behavior of MISHEMTs A novel method used to prepare PN junction by plasmon generated under pulsed laser irradiation on silicon chip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1