{"title":"Practical Manufacturing Process for Baloxavir Marboxil: Efficient Route to a Tricyclic Triazinanone Scaffold","authors":"Nobuaki Fukui*, Toshikatsu Maki, Kazunori Ban, Akihito Kijima, Setsuya Shibahara, Kazuya Okamoto, Sho Kamiya, Tatsuro Yasukata and Takayuki Tsuritani, ","doi":"10.1021/acs.oprd.3c00502","DOIUrl":null,"url":null,"abstract":"<p >Baloxavir marboxil, a cap-dependent endonuclease inhibitor, is an antiviral drug for influenza. This paper presents the development of two alternative routes for the industry-oriented preparation of a key tricyclic triazinanone intermediate, 7-(benzyloxy)-3,4,12,12a-tetrahydro-1<i>H</i>-[1,4]oxazino[3,4-<i>c</i>]pyrido[2,1-<i>f</i>][1,2,4]triazine-6,8-dione, in order to overcome the drawbacks of the initial scaled-up synthetic route used in the kilo lab. The first candidate route is based on a late-stage reductive approach to the target starting with raw materials used in the previous route, namely, morpholin-3-one and a pyridone carboxylic acid derivative. The highlight of this approach is the tandem condensation of the morpholine and pyridone units to construct the tricyclic core of the substrate for the final reduction step. The other candidate route engages less expensive raw materials, combination of a protected 2-aminoethanol and 2-bromo-1,1-dimethoxyethane instead of morpholin-3-one, and six chemical steps in total. The efficient transformation was accomplished by a single-step conversion consisting of four elementary steps, including tandem cyclizations accompanied by deprotections. The latter process proved to be robust for production of more than tens of kilograms for practical large-scale manufacturing, providing >27 kg of the targeted triazinanone intermediate per batch in 56% overall yield with satisfactory purity.</p>","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"28 6","pages":"2128–2138"},"PeriodicalIF":3.1000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.oprd.3c00502","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Baloxavir marboxil, a cap-dependent endonuclease inhibitor, is an antiviral drug for influenza. This paper presents the development of two alternative routes for the industry-oriented preparation of a key tricyclic triazinanone intermediate, 7-(benzyloxy)-3,4,12,12a-tetrahydro-1H-[1,4]oxazino[3,4-c]pyrido[2,1-f][1,2,4]triazine-6,8-dione, in order to overcome the drawbacks of the initial scaled-up synthetic route used in the kilo lab. The first candidate route is based on a late-stage reductive approach to the target starting with raw materials used in the previous route, namely, morpholin-3-one and a pyridone carboxylic acid derivative. The highlight of this approach is the tandem condensation of the morpholine and pyridone units to construct the tricyclic core of the substrate for the final reduction step. The other candidate route engages less expensive raw materials, combination of a protected 2-aminoethanol and 2-bromo-1,1-dimethoxyethane instead of morpholin-3-one, and six chemical steps in total. The efficient transformation was accomplished by a single-step conversion consisting of four elementary steps, including tandem cyclizations accompanied by deprotections. The latter process proved to be robust for production of more than tens of kilograms for practical large-scale manufacturing, providing >27 kg of the targeted triazinanone intermediate per batch in 56% overall yield with satisfactory purity.
期刊介绍:
The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.