Optimizing LPBF-parameters by Box-Behnken design for printing crack-free and dense high-boron alloyed stainless steel parts

IF 4.2 Q2 ENGINEERING, MANUFACTURING Additive manufacturing letters Pub Date : 2024-04-01 DOI:10.1016/j.addlet.2024.100206
Brenda Juliet Martins Freitas , Guilherme Yuuki Koga , Siegfried Arneitz , Claudemiro Bolfarini , Sergio de Traglia Amancio-Filho
{"title":"Optimizing LPBF-parameters by Box-Behnken design for printing crack-free and dense high-boron alloyed stainless steel parts","authors":"Brenda Juliet Martins Freitas ,&nbsp;Guilherme Yuuki Koga ,&nbsp;Siegfried Arneitz ,&nbsp;Claudemiro Bolfarini ,&nbsp;Sergio de Traglia Amancio-Filho","doi":"10.1016/j.addlet.2024.100206","DOIUrl":null,"url":null,"abstract":"<div><p>Boron has almost null solubility in iron, and its addition to stainless steels leads to the formation of hard borides, beneficial for increasing the wear resistance. However, these boron-containing steels have poor printability, with the occurrence of pronounced cracking, high porosity and risk of delamination. In this work, Box-Behnken design coupled with analysis of variance (ANOVA) was used to optimize the LPBF (Laser Powder Bed Fusion) processing parameters of a highly boron-alloyed stainless steel reinforced with a boride network. The proposed models demonstrated to be accurate in determine the porosity percentage for the studied alloys, in which the laser power and scanning speed play the main role in the alloys’ densification, and absence of extensive defects. These results indicate that the use of design of experiments tools is essential to produce defect-free boron-modified stainless steel specimens with a relatively low number of experiments, identifying a narrow optimized processing window to build bulk composite materials.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277236902400015X/pdfft?md5=3f91a5baca22ab813f4f7fd2c8ce57ac&pid=1-s2.0-S277236902400015X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277236902400015X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Boron has almost null solubility in iron, and its addition to stainless steels leads to the formation of hard borides, beneficial for increasing the wear resistance. However, these boron-containing steels have poor printability, with the occurrence of pronounced cracking, high porosity and risk of delamination. In this work, Box-Behnken design coupled with analysis of variance (ANOVA) was used to optimize the LPBF (Laser Powder Bed Fusion) processing parameters of a highly boron-alloyed stainless steel reinforced with a boride network. The proposed models demonstrated to be accurate in determine the porosity percentage for the studied alloys, in which the laser power and scanning speed play the main role in the alloys’ densification, and absence of extensive defects. These results indicate that the use of design of experiments tools is essential to produce defect-free boron-modified stainless steel specimens with a relatively low number of experiments, identifying a narrow optimized processing window to build bulk composite materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过盒式贝肯设计优化 LPBF 参数,用于打印无裂纹、致密的高硼合金不锈钢零件
硼在铁中的溶解度几乎为零,在不锈钢中加入硼会形成硬硼化物,有利于提高耐磨性。然而,这些含硼钢的印刷适性较差,会出现明显的裂纹、高孔隙率和分层风险。在这项工作中,采用方框-贝肯设计和方差分析(ANOVA)来优化用硼化物网络强化的高硼合金不锈钢的 LPBF(激光粉末床熔融)加工参数。结果表明,所提出的模型可以准确地确定所研究合金的孔隙率,其中激光功率和扫描速度对合金的致密化和无广泛缺陷起着主要作用。这些结果表明,使用实验设计工具对于以相对较少的实验次数制作无缺陷的硼改性不锈钢试样至关重要,同时还能确定制造块状复合材料的窄优化加工窗口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Additive manufacturing letters
Additive manufacturing letters Materials Science (General), Industrial and Manufacturing Engineering, Mechanics of Materials
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
37 days
期刊最新文献
Modelling process monitoring data in laser powder bed fusion: A pragmatic route to additive manufacturing quality assurance Drop-on-demand 3D printing of programable magnetic composites for soft robotics In-situ heating TEM observation of solidification cell evolutions in an Al-Fe alloy built by laser-powder bed fusion A non-melting additive approach to structural repair of aluminum aircraft fastener holes Enabling tailored microstructures by hybrid directed energy deposition processing of a nickel-based superalloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1