About drying phenomena of fuel cell and electrolyzer CCM inks: Selectivity of the evaporation of 1-propanol/water mixtures

IF 2.6 4区 工程技术 Q3 ELECTROCHEMISTRY Fuel Cells Pub Date : 2024-03-29 DOI:10.1002/fuce.202300252
Philipp Quarz, Nadine Zimmerer, Philip Scharfer, Wilhelm Schabel
{"title":"About drying phenomena of fuel cell and electrolyzer CCM inks: Selectivity of the evaporation of 1-propanol/water mixtures","authors":"Philipp Quarz,&nbsp;Nadine Zimmerer,&nbsp;Philip Scharfer,&nbsp;Wilhelm Schabel","doi":"10.1002/fuce.202300252","DOIUrl":null,"url":null,"abstract":"<p>In the production of catalyst-coated membranes (CCMs) for proton-exchange membrane fuel cells and electrolyzers, the ink formulation and its processing are key factors in determining the resulting catalyst layer. Catalyst inks often contain a multicomponent solvent mixture. Selective drying, which can occur with solvent mixtures, changes the composition in the solidifying film and thus influences the microstructure of the layer that forms. The selectivity depends on the material-specific thermodynamics of the solvents and the process-related drying parameters. Different 1-propanol/water mixtures serve as the state of the art material system considered and commonly used for CCM inks. Typical solvent mixtures can be dried selectively or non-selectively, depending on the initial ink composition and humidity of the drying air. In mixtures that contain more 1-propanol than the azeotropic or arheotropic composition, the 1-propanol content accumulates in the remaining liquid; if there is less, it decreases. Increasing the preloading of the drying air with water leads to a relative water enrichment and shifts the tipping point to higher initial alcohol fractions. This behavior can be transferred to the real CCM production.</p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"24 2","pages":"108-121"},"PeriodicalIF":2.6000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fuce.202300252","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202300252","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

In the production of catalyst-coated membranes (CCMs) for proton-exchange membrane fuel cells and electrolyzers, the ink formulation and its processing are key factors in determining the resulting catalyst layer. Catalyst inks often contain a multicomponent solvent mixture. Selective drying, which can occur with solvent mixtures, changes the composition in the solidifying film and thus influences the microstructure of the layer that forms. The selectivity depends on the material-specific thermodynamics of the solvents and the process-related drying parameters. Different 1-propanol/water mixtures serve as the state of the art material system considered and commonly used for CCM inks. Typical solvent mixtures can be dried selectively or non-selectively, depending on the initial ink composition and humidity of the drying air. In mixtures that contain more 1-propanol than the azeotropic or arheotropic composition, the 1-propanol content accumulates in the remaining liquid; if there is less, it decreases. Increasing the preloading of the drying air with water leads to a relative water enrichment and shifts the tipping point to higher initial alcohol fractions. This behavior can be transferred to the real CCM production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
燃料电池和电解槽 CCM 油墨的干燥现象:蒸发 1-丙醇/水混合物的选择性
在生产用于质子交换膜燃料电池和电解槽的催化剂涂层膜 (CCM) 时,油墨配方及其加工过程是决定催化剂层效果的关键因素。催化剂油墨通常含有多组分溶剂混合物。溶剂混合物可能发生选择性干燥,改变凝固膜中的成分,从而影响形成层的微观结构。选择性取决于溶剂的特定材料热力学和与工艺相关的干燥参数。不同的 1-丙醇/水混合物是 CCM 油墨考虑和常用的最先进材料系统。典型的溶剂混合物可以选择性或非选择性地干燥,这取决于初始油墨成分和干燥空气的湿度。在 1-propanol 含量高于共沸或等沸成分的混合物中,剩余液体中的 1-propanol 含量会累积;如果 1-propanol 含量较少,则会减少。增加干燥空气中的水预载量会导致水的相对富集,并将临界点转移到更高的初始酒精分数上。这种行为可以应用到实际的 CCM 生产中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fuel Cells
Fuel Cells 工程技术-电化学
CiteScore
5.80
自引率
3.60%
发文量
31
审稿时长
3.7 months
期刊介绍: This journal is only available online from 2011 onwards. Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables. Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in -chemistry- materials science- physics- chemical engineering- electrical engineering- mechanical engineering- is included. Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies. Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology. Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.
期刊最新文献
Research and Integration of Hydrogen Technologies to Access Economic Sustainability (EFCF2023) Cover Fuel Cells 5/2024 Modeling of Catalyst Degradation in Polymer Electrolyte Membrane Fuel Cells Applied to Three-Dimensional Computational Fluid Dynamics Simulation Electrowetland Pilot of 50 m2: Operation and Characterization Under Real Conditions for 1 Year Aging Effects Observed in Automotive Fuel Cell Stacks by Applying a New Realistic Test Protocol and Humidity Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1