Energetic particle acceleration and transport with the novel Icarus+PARADISE model

E. Husidic, N. Wijsen, T. Baratashvili, S. Poedts, Rami Vainio
{"title":"Energetic particle acceleration and transport with the novel Icarus+PARADISE model","authors":"E. Husidic, N. Wijsen, T. Baratashvili, S. Poedts, Rami Vainio","doi":"10.1051/swsc/2024009","DOIUrl":null,"url":null,"abstract":"With the rise of satellites and mankind's growing dependence on technology, there is an increasing awareness of space weather phenomena related to high-energy particles. Shock waves driven by coronal mass ejections (CMEs) and corotating interaction regions (CIRs) occasionally act as potent particle accelerators, generating hazardous solar energetic particles (SEPs) that pose risks to satellite electronics and astronauts. Numerical simulation tools capable of modelling and predicting large SEP events are thus highly demanded. We introduce the new Icarus+PARADISE model as an advancement of the previous EUHFORIA+PARADISE model. Icarus, based on the MPI-AMRVAC framework, is a three-dimensional magnetohydrodynamic code that models solar wind configurations from 0.1 au onwards, encompassing transient structures like CMEs or CIRs. Differing from EUHFORIA's uniform-only grid, Icarus incorporates solution adaptive mesh refinement (AMR) and grid stretching. The particle transport code PARADISE propagates energetic particles as test particles through these solar wind configurations by solving the focused transport equation in a stochastic manner. We validate our new model by reproducing EUHFORIA+PARADISE results. This is done by modelling the acceleration and transport of energetic particles in a synthetic solar wind configuration containing an embedded CIR.  Subsequently, we illustrate how the simulation results vary with grid resolution by employing different levels of AMR.. The resulting intensity profiles illustrate increased particle acceleration with higher levels of AMR in the shock region, better capturing the effects of the shock.","PeriodicalId":510580,"journal":{"name":"Journal of Space Weather and Space Climate","volume":"142 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Space Weather and Space Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/swsc/2024009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the rise of satellites and mankind's growing dependence on technology, there is an increasing awareness of space weather phenomena related to high-energy particles. Shock waves driven by coronal mass ejections (CMEs) and corotating interaction regions (CIRs) occasionally act as potent particle accelerators, generating hazardous solar energetic particles (SEPs) that pose risks to satellite electronics and astronauts. Numerical simulation tools capable of modelling and predicting large SEP events are thus highly demanded. We introduce the new Icarus+PARADISE model as an advancement of the previous EUHFORIA+PARADISE model. Icarus, based on the MPI-AMRVAC framework, is a three-dimensional magnetohydrodynamic code that models solar wind configurations from 0.1 au onwards, encompassing transient structures like CMEs or CIRs. Differing from EUHFORIA's uniform-only grid, Icarus incorporates solution adaptive mesh refinement (AMR) and grid stretching. The particle transport code PARADISE propagates energetic particles as test particles through these solar wind configurations by solving the focused transport equation in a stochastic manner. We validate our new model by reproducing EUHFORIA+PARADISE results. This is done by modelling the acceleration and transport of energetic particles in a synthetic solar wind configuration containing an embedded CIR.  Subsequently, we illustrate how the simulation results vary with grid resolution by employing different levels of AMR.. The resulting intensity profiles illustrate increased particle acceleration with higher levels of AMR in the shock region, better capturing the effects of the shock.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用新颖的伊卡洛斯+PARADISE模型进行能量粒子加速和传输
随着卫星的崛起和人类对技术的日益依赖,人们越来越意识到与高能粒子有关的空间天气现象。由日冕物质抛射(CMEs)和冠状相互作用区(CIRs)驱动的冲击波偶尔会充当强大的粒子加速器,产生危险的太阳高能粒子(SEPs),对卫星电子设备和宇航员构成威胁。因此,对能够模拟和预测大型太阳高能粒子事件的数值模拟工具的需求量很大。我们介绍了新的 Icarus+PARADISE 模型,它是之前 EUHFORIA+PARADISE 模型的升级版。伊卡洛斯是基于 MPI-AMRVAC 框架的三维磁流体动力学代码,可模拟 0.1 au 以上的太阳风配置,包括 CME 或 CIR 等瞬态结构。与 EUHFORIA 的均匀网格不同,Icarus 采用了解决方案自适应网格细化(AMR)和网格拉伸。粒子传输代码 PARADISE 以随机方式求解聚焦传输方程,将高能粒子作为测试粒子在这些太阳风构型中传播。我们通过重现 EUHFORIA+PARADISE 的结果来验证我们的新模型。这是通过模拟高能粒子在包含嵌入式 CIR 的合成太阳风配置中的加速和传输来实现的。 随后,我们通过采用不同级别的 AMR 来说明模拟结果如何随网格分辨率的变化而变化。由此得出的强度曲线表明,在冲击区域,随着 AMR 水平的提高,粒子的加速度也会增加,从而更好地捕捉到了冲击的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quasi-stationary substructure within a sporadic E layer observed by the Low Frequency Array (LOFAR) Characterizing the distribution of extreme geoelectric field events in Sweden Long term relationships of electron density with solar activity A Modeling Study of ≥2 MeV Electron Fluxes in GEO at Different Prediction Time Scales Based on LSTM and Transformer Networks Energetic particle acceleration and transport with the novel Icarus+PARADISE model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1