Long term relationships of electron density with solar activity

N. Jakowski, M. Mainul Hoque, J. Mielich
{"title":"Long term relationships of electron density with solar activity","authors":"N. Jakowski, M. Mainul Hoque, J. Mielich","doi":"10.1051/swsc/2024023","DOIUrl":null,"url":null,"abstract":"Greenhouse gases such as carbon dioxide and methane that are causing climate change may cause long term trends in the thermosphere and ionosphere. The paper aims to contribute to explore long term effects in the ionosphere focusing on the impact of solar activity changes.\nPeak electron density data derived from vertical sounding measurements covering 65 years at the ionosonde stations Juliusruh (JR055), Boulder (BC840) and Kokubunji (TO536), have been utilized to estimate the long-term behavior of daytime ionospheric F2 layer ionization in relation to the solar 10.7 cm radio flux index F10.7. In parallel, Global Navigation Satellite System (GNSS) based vertical total electron content (TEC) data over the ionosonde stations in combination with the peak electron density data have been used to derive the equivalent slab thickness τ for estimating long-term behavior in the time period 1996-2022. A new approach has been developed for deriving production and loss term proxies for studying long-term ionization effects from F2 layer peak electron density and TEC data. The derived coefficients allow estimating the long-term variation of atomic oxygen and molecular nitrogen concentrations including their ratio during winter months.\nThe noon-time slab thickness values over Juliusruh correlate well with the decrease of F10.7 and the F2 layer peak height and enable estimating the neutral gas temperature. The equivalent slab thickness decreases by about 20 km per decade in the period 1996-2022, indicating a thermospheric cooling by about 100 K per decade for Juliusruh. Whereas the oxygen concentration decreases, the loss term, considered as a proxy for molecular components of the neutral gas, in particular N2, increases with the long-term solar activity variation. Considering 11 years averages of the production and loss terms under wintertime conditions, the long-term study reveals for the O/N2 ratio a percentage decrease of 5% per decade and for F10.7 about 3.1% per decade in a linear approach referred to the year 1970. Linear models of 11 years averaged NmF2 and foF2 from corresponding F10.7 show a very close correlation with the temporal variation of F10.7 until about 1990. The root mean square errors are in the order of 1.0 -1.3 ‧1010m-3 for NmF2 and 0.03-0.05 MHz for foF2. After 1990 the linear models clearly deviate from F10.7 at all selected ionosonde stations indicating a non-local effect.","PeriodicalId":510580,"journal":{"name":"Journal of Space Weather and Space Climate","volume":"2 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Space Weather and Space Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/swsc/2024023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Greenhouse gases such as carbon dioxide and methane that are causing climate change may cause long term trends in the thermosphere and ionosphere. The paper aims to contribute to explore long term effects in the ionosphere focusing on the impact of solar activity changes. Peak electron density data derived from vertical sounding measurements covering 65 years at the ionosonde stations Juliusruh (JR055), Boulder (BC840) and Kokubunji (TO536), have been utilized to estimate the long-term behavior of daytime ionospheric F2 layer ionization in relation to the solar 10.7 cm radio flux index F10.7. In parallel, Global Navigation Satellite System (GNSS) based vertical total electron content (TEC) data over the ionosonde stations in combination with the peak electron density data have been used to derive the equivalent slab thickness τ for estimating long-term behavior in the time period 1996-2022. A new approach has been developed for deriving production and loss term proxies for studying long-term ionization effects from F2 layer peak electron density and TEC data. The derived coefficients allow estimating the long-term variation of atomic oxygen and molecular nitrogen concentrations including their ratio during winter months. The noon-time slab thickness values over Juliusruh correlate well with the decrease of F10.7 and the F2 layer peak height and enable estimating the neutral gas temperature. The equivalent slab thickness decreases by about 20 km per decade in the period 1996-2022, indicating a thermospheric cooling by about 100 K per decade for Juliusruh. Whereas the oxygen concentration decreases, the loss term, considered as a proxy for molecular components of the neutral gas, in particular N2, increases with the long-term solar activity variation. Considering 11 years averages of the production and loss terms under wintertime conditions, the long-term study reveals for the O/N2 ratio a percentage decrease of 5% per decade and for F10.7 about 3.1% per decade in a linear approach referred to the year 1970. Linear models of 11 years averaged NmF2 and foF2 from corresponding F10.7 show a very close correlation with the temporal variation of F10.7 until about 1990. The root mean square errors are in the order of 1.0 -1.3 ‧1010m-3 for NmF2 and 0.03-0.05 MHz for foF2. After 1990 the linear models clearly deviate from F10.7 at all selected ionosonde stations indicating a non-local effect.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电子密度与太阳活动的长期关系
造成气候变化的二氧化碳和甲烷等温室气体可能会导致热层和电离层的长期趋势。电离层F2层电离与太阳10.7厘米射电通量指数F10.7之间的长期关系,利用在朱利叶斯鲁(JR055)、博尔德(BC840)和国分寺(TO536)电离层观测站进行的垂直探测测量得出的65年峰值电子密度数据进行了估算。同时,基于全球导航卫星系统(GNSS)的电离层探测站垂直电子总含量(TEC)数据与电子密度峰值数据相结合,用于推导等效板厚度τ,以估计 1996-2022 年期间的长期行为。开发了一种新方法,从 F2 层峰值电子密度和 TEC 数据中推导出用于研究长期电离效应的生成和损耗项代用系数。朱利叶斯鲁上空正午时段的板厚度值与 F10.7 和 F2 层峰值高度的下降有很好的相关性,可以用来估算中性气体温度。在 1996-2022 年期间,等效板厚度每十年减少约 20 千米,表明朱利叶斯鲁的热层每十年冷却约 100 千卡。虽然氧气浓度降低了,但作为中性气体分子成分,特别是 N2 的替代物的损失项却随着太阳活动的长期变化而增加。考虑到冬季条件下 11 年生产和损失项的平均值,长期研究表明,以 1970 年为参照线性方法,氧/二氧化氮比值每十年下降 5%,F10.7 每十年下降约 3.1%。相应 F10.7 的 11 年 NmF2 和 foF2 平均值的线性模型显示,直到 1990 年左右,与 F10.7 的时间变化有非常密切的相关性。NmF2 的均方根误差在 1.0 -1.3 ‧1010m-3 之间,foF2 的均方根误差在 0.03-0.05 MHz 之间。1990 年以后,在所有选定的电离层探测站,线性模型明显偏离 F10.7,这表明存在非本地效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quasi-stationary substructure within a sporadic E layer observed by the Low Frequency Array (LOFAR) Characterizing the distribution of extreme geoelectric field events in Sweden Long term relationships of electron density with solar activity A Modeling Study of ≥2 MeV Electron Fluxes in GEO at Different Prediction Time Scales Based on LSTM and Transformer Networks Energetic particle acceleration and transport with the novel Icarus+PARADISE model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1