Parameter Estimation and Hypothesis Testing on Bivariate Log-Normal Regression Models

Kadek Budinirmala, Purhadi, Achmad Choiruddin
{"title":"Parameter Estimation and Hypothesis Testing on Bivariate Log-Normal Regression Models","authors":"Kadek Budinirmala, Purhadi, Achmad Choiruddin","doi":"10.18502/kls.v8i1.15546","DOIUrl":null,"url":null,"abstract":"This study aims to introduce a bivariate Log-Normal regression model and to develop a technique for parameter estimation and hypothesis testing. We term the model Bivariate Log-Normal Regression (BLNR). The estimation procedure is conducted by the standard Maximum Likelihood Estimation (MLE) employing the Newton-Raphson method. To perform hypothesis testing, we adapt the Maximum Likelihood Ratio Test (MLRT) for simultaneous testing with test statistics which, for large n, follows Chi-Square distribution with degrees of freedom p. In addition, the partial testing is derived from a central limit theorem which results in a Z-test statistic. \nKeywords: parameter estimation, hypothesis testing, bivariate log, normal regression","PeriodicalId":17898,"journal":{"name":"KnE Life Sciences","volume":"83 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KnE Life Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/kls.v8i1.15546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to introduce a bivariate Log-Normal regression model and to develop a technique for parameter estimation and hypothesis testing. We term the model Bivariate Log-Normal Regression (BLNR). The estimation procedure is conducted by the standard Maximum Likelihood Estimation (MLE) employing the Newton-Raphson method. To perform hypothesis testing, we adapt the Maximum Likelihood Ratio Test (MLRT) for simultaneous testing with test statistics which, for large n, follows Chi-Square distribution with degrees of freedom p. In addition, the partial testing is derived from a central limit theorem which results in a Z-test statistic. Keywords: parameter estimation, hypothesis testing, bivariate log, normal regression
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双变量对数正态回归模型的参数估计和假设检验
本研究旨在介绍一种双变量对数正态回归模型,并开发一种参数估计和假设检验技术。我们将该模型称为双变量对数正态回归模型(BLNR)。估计过程采用标准的最大似然估计法(MLE)和牛顿-拉斐逊法(Newton-Raphson method)。为了进行假设检验,我们采用最大似然比检验(MLRT)进行同步检验,检验统计量在大 n 时遵循自由度为 p 的 Chi-Square 分布。关键词:参数估计、假设检验、二元对数、正态回归
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Generalized Reciprocal Method on 2D Seismic Refraction Data in Mt. Manglayang, West Java Implementing Time Series Cross Validation to Evaluate the Forecasting Model Performance Analysis of Macroalgae Diversity in the West Coastal of Pananjung Beach, Pangandaran Ring Artifact on SPECT Image due to Arbitrary Position of PMT Malfunction Absorbance Optical Properties Calculation of ABX3 (A = Cs, Li; B = Pb; X = I, Br, Cl) Cubic Phase Using Density Functional Theory (DFT) Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1