Application of extended depth of field 3D imagery to tackle the challenges of cryptic species: a use case in the genus Betiscoides Sjöstedt, 1924 (Orthoptera, Caelifera, Lentulidae) and its taxonomic implications

Q2 Agricultural and Biological Sciences Evolutionary Systematics Pub Date : 2024-03-25 DOI:10.3897/evolsyst.8.117735
Daniela Matenaar
{"title":"Application of extended depth of field 3D imagery to tackle the challenges of cryptic species: a use case in the genus Betiscoides Sjöstedt, 1924 (Orthoptera, Caelifera, Lentulidae) and its taxonomic implications","authors":"Daniela Matenaar","doi":"10.3897/evolsyst.8.117735","DOIUrl":null,"url":null,"abstract":"Discovering and handling cryptic diversity among species challenges taxonomists around the world. This is particularly true for the most diverse animal class – the insects – with cryptic diversity, apart from vast species numbers, being one of the main factors that hamper the description of new species. The biodiversity hotspot Cape Floristic Region of South Africa harbors many endemic and yet undescribed insect species, inter alia, Orthoptera. In this study, extended depth of field and 3D imagery enabled for a novel assessment of the external morphological characteristics used for defining and describing the genetically highly diverse genus Betiscoides Sjösdtedt, 1924, leading to a new definition of the genus’ characteristics as well as a revision of character traits of the known species. Two new species are described and a key to all five recognized Betiscoides species is provided. Application standards are derived to enable replicable and reliable image acquisition and measuring. These findings shall contribute to promote efforts being made to establish image based taxonomic identification for researchers worldwide. High-resolution images provide the basis to train deep learning algorithms/ tools, to detect the smallest differences in highly morphologically alike species, and to implement this knowledge in global species monitoring and conservation action to prevent further species loss.","PeriodicalId":36314,"journal":{"name":"Evolutionary Systematics","volume":" 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Systematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/evolsyst.8.117735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Discovering and handling cryptic diversity among species challenges taxonomists around the world. This is particularly true for the most diverse animal class – the insects – with cryptic diversity, apart from vast species numbers, being one of the main factors that hamper the description of new species. The biodiversity hotspot Cape Floristic Region of South Africa harbors many endemic and yet undescribed insect species, inter alia, Orthoptera. In this study, extended depth of field and 3D imagery enabled for a novel assessment of the external morphological characteristics used for defining and describing the genetically highly diverse genus Betiscoides Sjösdtedt, 1924, leading to a new definition of the genus’ characteristics as well as a revision of character traits of the known species. Two new species are described and a key to all five recognized Betiscoides species is provided. Application standards are derived to enable replicable and reliable image acquisition and measuring. These findings shall contribute to promote efforts being made to establish image based taxonomic identification for researchers worldwide. High-resolution images provide the basis to train deep learning algorithms/ tools, to detect the smallest differences in highly morphologically alike species, and to implement this knowledge in global species monitoring and conservation action to prevent further species loss.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用扩展景深三维图像应对隐蔽物种的挑战:Betiscoides Sjöstedt, 1924 属(直翅目,茎叶纲,扁豆科)的应用案例及其对分类学的影响
发现和处理物种间的隐性多样性是全世界分类学家面临的挑战。对于种类最繁多的动物类别--昆虫来说尤其如此,除了物种数量庞大之外,隐性多样性也是阻碍新物种描述的主要因素之一。南非的生物多样性热点开普花卉区(Cape Floristic Region)蕴藏着许多特有的、尚未被描述的昆虫物种,其中包括直翅目(Orthoptera)昆虫。在这项研究中,利用扩展景深和三维图像对用于定义和描述基因高度多样化的 Betiscoides Sjösdtedt, 1924 属的外部形态特征进行了新的评估,从而对该属的特征进行了新的定义,并对已知物种的特征进行了修订。描述了两个新种,并提供了所有五个公认的 Betiscoides 种的检索表。此外,还提出了应用标准,以实现可复制的、可靠的图像采集和测量。这些研究成果将有助于推动全球研究人员建立基于图像的分类鉴定。高分辨率图像为训练深度学习算法/工具、检测形态上高度相似物种的最小差异以及将这些知识应用于全球物种监测和保护行动以防止物种进一步减少提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Evolutionary Systematics
Evolutionary Systematics Agricultural and Biological Sciences-Insect Science
CiteScore
2.20
自引率
0.00%
发文量
14
审稿时长
12 weeks
期刊最新文献
A treasure trove of endemics: two new species of snake-eyed skinks of the genus Panaspis Cope, 1868 (Squamata, Scincidae) from the Serra da Neve Inselberg, southwestern Angola The discovery and naming of the Sumatran Rhinoceros (Dicerorhinus sumatrensis) after 1793, with details of the Rhinoceros Sumatricus of Bertuch (1805) and Wilhelm (1808) Application of extended depth of field 3D imagery to tackle the challenges of cryptic species: a use case in the genus Betiscoides Sjöstedt, 1924 (Orthoptera, Caelifera, Lentulidae) and its taxonomic implications Systematic revision of the Eyelash Palm-Pitviper Bothriechis schlegelii (Serpentes, Viperidae), with the description of five new species and revalidation of three Systematic revision of the Eyelash Palm-Pitviper Bothriechis schlegelii (Serpentes, Viperidae), with the description of five new species and revalidation of three
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1