The Imaging X-ray Polarimetry Explorer (IXPE) and New Directions for the Future

P. Soffitta
{"title":"The Imaging X-ray Polarimetry Explorer (IXPE) and New Directions for the Future","authors":"P. Soffitta","doi":"10.3390/instruments8020025","DOIUrl":null,"url":null,"abstract":"An observatory dedicated to X-ray polarimetry has been operational since 9 December 2021. The Imaging X-ray Polarimetry Explorer (IXPE), a collaboration between NASA and ASI, features three X-ray telescopes equipped with detectors sensitive to linear polarization set to 120°. This marks the first instance of a three-telescope SMEX mission. Upon reaching orbit, an extending boom was deployed, extending the optics and detector to a focal length of 4 m. IXPE targets each celestial source through dithering observations. This method is essential for supporting on-ground calibrations by averaging the detector’s response across a section of its sensitive plane. The spacecraft supplies power, enables attitude determination for subsequent on-ground attitude reconstruction, and issues control commands. After two years of observation, IXPE has detected significant linear polarization from nearly all classes of celestial sources emitting X-rays. This paper outlines the IXPE mission’s achievements after two years of operation in orbit. In addition, we report developments for future high-throughput X-ray optics that will have much smaller dead-times by using a new generation of Applied Specific Integrated Circuits (ASIC), and may provide 3D reconstruction of photo-electron tracks.","PeriodicalId":507788,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/instruments8020025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An observatory dedicated to X-ray polarimetry has been operational since 9 December 2021. The Imaging X-ray Polarimetry Explorer (IXPE), a collaboration between NASA and ASI, features three X-ray telescopes equipped with detectors sensitive to linear polarization set to 120°. This marks the first instance of a three-telescope SMEX mission. Upon reaching orbit, an extending boom was deployed, extending the optics and detector to a focal length of 4 m. IXPE targets each celestial source through dithering observations. This method is essential for supporting on-ground calibrations by averaging the detector’s response across a section of its sensitive plane. The spacecraft supplies power, enables attitude determination for subsequent on-ground attitude reconstruction, and issues control commands. After two years of observation, IXPE has detected significant linear polarization from nearly all classes of celestial sources emitting X-rays. This paper outlines the IXPE mission’s achievements after two years of operation in orbit. In addition, we report developments for future high-throughput X-ray optics that will have much smaller dead-times by using a new generation of Applied Specific Integrated Circuits (ASIC), and may provide 3D reconstruction of photo-electron tracks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
成像 X 射线极坐标探测器(IXPE)和未来的新方向
一个专门用于 X 射线偏振测量的观测站自 2021 年 12 月 9 日起开始运行。成像 X 射线偏振探测仪(IXPE)是美国航天局和意大利航天局的合作项目,配备了三台 X 射线望远镜,探测器对线性偏振设置为 120°非常敏感。这标志着三台望远镜 SMEX 任务的首次尝试。IXPE 通过抖动观测瞄准每个天体源。这种方法对支持地面校准至关重要,因为它可以对探测器灵敏平面上的一段探测器响应进行平均。航天器提供电源,为随后的地面姿态重建确定姿态,并发出控制指令。经过两年的观测,IXPE 已经从几乎所有类别的天体发射 X 射线源中探测到明显的线性偏振。本文概述了 IXPE 在轨运行两年后取得的成就。此外,我们还报告了未来高通量 X 射线光学系统的发展情况,通过使用新一代应用专用集成电路(ASIC),这种光学系统的死区时间将大大缩短,并可提供光电子轨迹的三维重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Rapid, Non-Destructive Method to Detect Counterfeit Integrated Circuits Using a Resonant Cavity System Design and Performance of a Low-Energy Gamma-Ray Trigger System for HERD Jitter Measurements of 1 cm2 LGADs for Space Experiments Development of High-Voltage Electrodes for Neutron Scattering Sample Environment Devices The Imaging X-ray Polarimetry Explorer (IXPE) and New Directions for the Future
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1