Estimation of bioluminescence intensity of the dinoflagellates
Noctiluca scintillans, Polykrikos kofoidii, and Alexandrium mediterraneum
populations in Korean waters using cell abundance and
water temperature
Sang Ah Park, Hae Jin Jeong, Jin Hee Ok, Hee Chang Kang, Ji Hyun You, Se Hee Eom, Y. Yoo, Moo Joon Lee
{"title":"Estimation of bioluminescence intensity of the dinoflagellates\nNoctiluca scintillans, Polykrikos kofoidii, and Alexandrium mediterraneum\npopulations in Korean waters using cell abundance and\nwater temperature","authors":"Sang Ah Park, Hae Jin Jeong, Jin Hee Ok, Hee Chang Kang, Ji Hyun You, Se Hee Eom, Y. Yoo, Moo Joon Lee","doi":"10.4490/algae.2024.39.3.10","DOIUrl":null,"url":null,"abstract":"Many dinoflagellates produce bioluminescence. To estimate the intensity of bioluminescence produced by populations of the heterotrophic dinoflagellates <i>Noctiluca scintillans </i>and <i>Polykrikos kofoidii</i> and autotrophic dinoflagellate <i>Alexandrium mediterraneum</i> in Korean waters, we measured cellular bioluminescence intensity as a function of water temperature and calculated population bioluminescence intensity with cell abundances and water temperature. The mean 200-second-integrated bioluminescence intensity per cell (BL<sub>cell</sub>) of <i>N. scintillans</i> satiated with the chlorophyte <i>Dunaliella salina</i> decreased continuously with increasing water temperature from 5 to 25°C. However, the BL<sub>cell</sub> of <i>P. kofoidii</i> satiated with the mixotrophic dinoflagellate Alexandrium minutum continuously increased from 5 to 15°C but decreased at temperatures exceeding this (to 30°C). Similarly, the BL<sub>cell</sub> of <i>A. mediterraneum</i> continuously increased from 10 to 20°C but decreased between 20 and 30°C. The difference between highest and lowest BL<sub>cell</sub> of <i>N. scintillans</i>, <i>P. kofoidii</i>, and <i>A. mediterraneum</i> at the tested water temperatures was 3.5, 11.8, and 21.0 times, respectively, indicating that water temperature clearly affected BL<sub>cell</sub>. The highest estimated population bioluminescence intensity (BL<sub>popul</sub>) of <i>N. scintillans</i> in Korean waters in 1998–2022 was 4.22 × 10<sup>13</sup> relative light unit per liter (RLU L<sup>-1</sup>), which was 1,850 and 554,000 times greater than that of <i>P. kofoidii</i> and <i>A. mediterraneum</i>, respectively. This indicates that <i>N. scintillans</i> populations produced much brighter bioluminescence in Korean waters than the populations of <i>P. kofoidii</i> or <i>A. mediterraneum</i>.","PeriodicalId":504557,"journal":{"name":"Algae","volume":" 58","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4490/algae.2024.39.3.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Many dinoflagellates produce bioluminescence. To estimate the intensity of bioluminescence produced by populations of the heterotrophic dinoflagellates Noctiluca scintillans and Polykrikos kofoidii and autotrophic dinoflagellate Alexandrium mediterraneum in Korean waters, we measured cellular bioluminescence intensity as a function of water temperature and calculated population bioluminescence intensity with cell abundances and water temperature. The mean 200-second-integrated bioluminescence intensity per cell (BLcell) of N. scintillans satiated with the chlorophyte Dunaliella salina decreased continuously with increasing water temperature from 5 to 25°C. However, the BLcell of P. kofoidii satiated with the mixotrophic dinoflagellate Alexandrium minutum continuously increased from 5 to 15°C but decreased at temperatures exceeding this (to 30°C). Similarly, the BLcell of A. mediterraneum continuously increased from 10 to 20°C but decreased between 20 and 30°C. The difference between highest and lowest BLcell of N. scintillans, P. kofoidii, and A. mediterraneum at the tested water temperatures was 3.5, 11.8, and 21.0 times, respectively, indicating that water temperature clearly affected BLcell. The highest estimated population bioluminescence intensity (BLpopul) of N. scintillans in Korean waters in 1998–2022 was 4.22 × 1013 relative light unit per liter (RLU L-1), which was 1,850 and 554,000 times greater than that of P. kofoidii and A. mediterraneum, respectively. This indicates that N. scintillans populations produced much brighter bioluminescence in Korean waters than the populations of P. kofoidii or A. mediterraneum.