{"title":"Digital Pathology Image Reconstruction with Alternating Direction Method of Multipliers (ADMM) using Wavelet, Contourlet and Shearlet Transforms","authors":"Esra Şengün Ermeydan, Ilyas Çankaya","doi":"10.55525/tjst.1367366","DOIUrl":null,"url":null,"abstract":"Dijital patoloji, patoloji bilgilerinin elde edilmesi, çıkarılması ve yorumlanmasının hesaplamalı tekniklerle desteklendiği görüntü tabanlı ortamı ifade eder. Teşhis sürecini kolaylaştırma açısından büyük bir potansiyele sahiptir ancak büyük veri boyutu ve geniş depolama alanlarının gerekliliği zorlayıcıdır. Bu nedenle, bu araştırmada, yeniden yapılandırma için veri miktarını azaltmak amacıyla Sıkıştırılmış Algılama (CS) şeması dijital patoloji görüntüleri ile incelenmiştir. CS, başarılı bir kurtarma için sinyallerin seyrekliğini gerektirir; bu, farklı seyrekleştirici bazların nihai performansı değiştirebileceği anlamına gelir. Dijital patoloji görüntülerini seyrekleştirmek için Dalgacık, Contourlet ve Shearlet Dönüşümleri incelenmiştir, Contourlet Dönüşümünün üstün olduğu görülmüştür. Yeniden yapılandırma için Alternatif Yön Çarpan Yöntemi (ADMM) sağlam ve hızlı bir dışbükey optimizasyon yöntemi olduğundan seçilmiştir. Dijital patoloji görüntülerinin klasik görüntülere göre daha az seyrek olmasına rağmen CS geriçatması tatmin edicidir, bu da CS'nin dijital patoloji için potansiyelini vurgulamaktadır. Bu çalışma, dijital patoloji ile CS alanında öncü olabilir ve farklı tipte mikroskoplarla veya farklı dalga boylarında CS tabanlı görüntülemeye yönelik daha ileri çalışmaları teşvik edebilir.","PeriodicalId":516893,"journal":{"name":"Turkish Journal of Science and Technology","volume":"59 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55525/tjst.1367366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Dijital patoloji, patoloji bilgilerinin elde edilmesi, çıkarılması ve yorumlanmasının hesaplamalı tekniklerle desteklendiği görüntü tabanlı ortamı ifade eder. Teşhis sürecini kolaylaştırma açısından büyük bir potansiyele sahiptir ancak büyük veri boyutu ve geniş depolama alanlarının gerekliliği zorlayıcıdır. Bu nedenle, bu araştırmada, yeniden yapılandırma için veri miktarını azaltmak amacıyla Sıkıştırılmış Algılama (CS) şeması dijital patoloji görüntüleri ile incelenmiştir. CS, başarılı bir kurtarma için sinyallerin seyrekliğini gerektirir; bu, farklı seyrekleştirici bazların nihai performansı değiştirebileceği anlamına gelir. Dijital patoloji görüntülerini seyrekleştirmek için Dalgacık, Contourlet ve Shearlet Dönüşümleri incelenmiştir, Contourlet Dönüşümünün üstün olduğu görülmüştür. Yeniden yapılandırma için Alternatif Yön Çarpan Yöntemi (ADMM) sağlam ve hızlı bir dışbükey optimizasyon yöntemi olduğundan seçilmiştir. Dijital patoloji görüntülerinin klasik görüntülere göre daha az seyrek olmasına rağmen CS geriçatması tatmin edicidir, bu da CS'nin dijital patoloji için potansiyelini vurgulamaktadır. Bu çalışma, dijital patoloji ile CS alanında öncü olabilir ve farklı tipte mikroskoplarla veya farklı dalga boylarında CS tabanlı görüntülemeye yönelik daha ileri çalışmaları teşvik edebilir.