Conversion Characteristics of Chemical Constituents in Liriodendron tulipifera and Their Influences on Biomass Recalcitrance during Acid-Catalyzed Organosolv Pretreatment

K. Gwak, Jun-Ho Shin, Chae-Hwi Yoon, In-Gyu Choi
{"title":"Conversion Characteristics of Chemical Constituents in\n Liriodendron tulipifera and Their Influences on Biomass\n Recalcitrance during Acid-Catalyzed Organosolv Pretreatment","authors":"K. Gwak, Jun-Ho Shin, Chae-Hwi Yoon, In-Gyu Choi","doi":"10.5658/wood.2024.52.2.101","DOIUrl":null,"url":null,"abstract":"The conversion characteristics of the major components of Liriodendron tulipifera were investigated during acid-catalyzed organosolv pretreatment. Glucan in L. tulipifera was slowly hydrolyzed, whereas xylan was rapidly hydrolyzed. Simultaneous hydrolysis and degradation of xylan and lignin occurred; however, after complete hydrolysis of xylan at higher temperatures, lignin remained and was not completely degraded or solubilized. These conversion characteristics influence the structural properties of glucan in L. tulipifera . Critical hydrolysis of the crystalline regions in glucan occurred along with rapid hydrolysis of the amorphous regions in xylan and lignin. Breakdown of internal lignin and xylan bonds, along with solubilization of lignin, causes destruction of the lignin-carbohydrate complex. Over a temperature of 160℃, the lignin that remained was coalesced, migrated, and re-deposited on the surface of pretreated solid residue, resulting in a drastic increase in the number and content of lignin droplets. From the results, the characteristic conversions of each constituent and the changes in the structural properties in L. tulipifera effectively improved enzymatic hydrolysis in the range of 140℃–150℃. Therefore, it can be concluded that significant changes in the biomass recalcitrance of L. tulipifera occurred during organosolv pretreatment.","PeriodicalId":17357,"journal":{"name":"Journal of the Korean wood science and technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean wood science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5658/wood.2024.52.2.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The conversion characteristics of the major components of Liriodendron tulipifera were investigated during acid-catalyzed organosolv pretreatment. Glucan in L. tulipifera was slowly hydrolyzed, whereas xylan was rapidly hydrolyzed. Simultaneous hydrolysis and degradation of xylan and lignin occurred; however, after complete hydrolysis of xylan at higher temperatures, lignin remained and was not completely degraded or solubilized. These conversion characteristics influence the structural properties of glucan in L. tulipifera . Critical hydrolysis of the crystalline regions in glucan occurred along with rapid hydrolysis of the amorphous regions in xylan and lignin. Breakdown of internal lignin and xylan bonds, along with solubilization of lignin, causes destruction of the lignin-carbohydrate complex. Over a temperature of 160℃, the lignin that remained was coalesced, migrated, and re-deposited on the surface of pretreated solid residue, resulting in a drastic increase in the number and content of lignin droplets. From the results, the characteristic conversions of each constituent and the changes in the structural properties in L. tulipifera effectively improved enzymatic hydrolysis in the range of 140℃–150℃. Therefore, it can be concluded that significant changes in the biomass recalcitrance of L. tulipifera occurred during organosolv pretreatment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
酸催化有机溶胶预处理过程中 Liriodendron tulipifera 中化学成分的转化特征及其对生物质再抗性的影响
研究了在酸催化有机溶胶预处理过程中郁金香主要成分的转化特性。郁金香中的葡聚糖被缓慢水解,而木聚糖则被快速水解。木聚糖和木质素同时发生水解和降解;然而,木聚糖在较高温度下完全水解后,木质素仍然存在,没有完全降解或溶解。这些转化特征影响了 L. tulipifera 中葡聚糖的结构特性。在木聚糖和木质素的无定形区域快速水解的同时,葡聚糖的结晶区域也发生了临界水解。木质素和木聚糖内部键的断裂以及木质素的溶解导致了木质素-碳水化合物复合物的破坏。在 160℃的温度下,残留的木质素凝聚、迁移并重新沉积在预处理过的固体残渣表面,导致木质素液滴的数量和含量急剧增加。从结果来看,在 140℃-150℃ 范围内,郁金香中各成分的特征转化率和结构特性的变化有效地改善了酶水解作用。因此,可以得出结论:在有机溶胶预处理过程中,郁金香的生物质再钙化性发生了显著变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Korean wood science and technology
Journal of the Korean wood science and technology Materials Science-Materials Science (miscellaneous)
CiteScore
5.20
自引率
0.00%
发文量
32
期刊介绍: The Journal of the Korean Wood Science and Technology (JKWST) launched in 1973 as an official publication of the Korean Society of Wood Science and Technology has been served as a core of knowledges on wood science and technology. The Journal acts as a medium for the exchange of research in the area of science and technology related to wood, and publishes results on the biology, chemistry, physics and technology of wood and wood-based products. Research results about applied sciences of wood-based materials are also welcome. The Journal is published bimonthly, and printing six issues per year. Supplemental or special issues are published occasionally. The abbreviated and official title of the journal is ''J. Korean Wood Sci. Technol.''. All submitted manuscripts written in Korean or English are peer-reviewed by more than two reviewers. The title, abstract, acknowledgement, references, and captions of figures and tables should be provided in English for all submitted manuscripts.
期刊最新文献
A Study on the Positioning Strategy of Wood Cultural Experience Center Determination of the Boundary between Juvenile–Mature Wood of Diospyros kaki and Their Wood Anatomical Variations Conversion Characteristics of Chemical Constituents in Liriodendron tulipifera and Their Influences on Biomass Recalcitrance during Acid-Catalyzed Organosolv Pretreatment Utilization of Sapwood Waste of Fast-Growing Teak in Activated Carbon Production and Its Adsorption Properties Coicis Semen Reduces Staphylococcus aureus Persister Cell Formation by Increasing Membrane Permeability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1