{"title":"matlab based graphical user interface for the monitoring and early detection of keratoconus","authors":"I. Kallel Fourati, S. Kammoun","doi":"10.22201/icat.24486736e.2024.22.1.2103","DOIUrl":null,"url":null,"abstract":" The rapid and extensive growth in medical imaging modalities and their applications is creating a pressing need for computers and computing in image processing, visualization, archival, and analysis. In this article, a Matlab-based graphical user interface (GUI) program is proposed for the monitoring and early detection of keratoconus. The findings show the efficiency of the proposed to detect the early stage of keratoconus. The proposed neural network model produces accuracy, ranging from 96% to 92%. It considers, respectively, 2 classes (normal cornea and keratoconus) and 3 classes (keratoconus, suspected keratoconus or normal) which will increase to 99% with respect to the 2 classes of keratoconus and 94% to the 3 classes when combining topography parameters with OCT image corneal pachymetry measurements and clinical judgments. \nThe compatibility of the graphical interface components with common medical data and image analysis tools facilitates the involvement of the ophthalmologist in the digitization of the medical records, the image processing and the conception of multimodal artificial intelligence applications for medical imaging.","PeriodicalId":15073,"journal":{"name":"Journal of Applied Research and Technology","volume":"14 27","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22201/icat.24486736e.2024.22.1.2103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid and extensive growth in medical imaging modalities and their applications is creating a pressing need for computers and computing in image processing, visualization, archival, and analysis. In this article, a Matlab-based graphical user interface (GUI) program is proposed for the monitoring and early detection of keratoconus. The findings show the efficiency of the proposed to detect the early stage of keratoconus. The proposed neural network model produces accuracy, ranging from 96% to 92%. It considers, respectively, 2 classes (normal cornea and keratoconus) and 3 classes (keratoconus, suspected keratoconus or normal) which will increase to 99% with respect to the 2 classes of keratoconus and 94% to the 3 classes when combining topography parameters with OCT image corneal pachymetry measurements and clinical judgments.
The compatibility of the graphical interface components with common medical data and image analysis tools facilitates the involvement of the ophthalmologist in the digitization of the medical records, the image processing and the conception of multimodal artificial intelligence applications for medical imaging.
期刊介绍:
The Journal of Applied Research and Technology (JART) is a bimonthly open access journal that publishes papers on innovative applications, development of new technologies and efficient solutions in engineering, computing and scientific research. JART publishes manuscripts describing original research, with significant results based on experimental, theoretical and numerical work.
The journal does not charge for submission, processing, publication of manuscripts or for color reproduction of photographs.
JART classifies research into the following main fields:
-Material Science:
Biomaterials, carbon, ceramics, composite, metals, polymers, thin films, functional materials and semiconductors.
-Computer Science:
Computer graphics and visualization, programming, human-computer interaction, neural networks, image processing and software engineering.
-Industrial Engineering:
Operations research, systems engineering, management science, complex systems and cybernetics applications and information technologies
-Electronic Engineering:
Solid-state physics, radio engineering, telecommunications, control systems, signal processing, power electronics, electronic devices and circuits and automation.
-Instrumentation engineering and science:
Measurement devices (pressure, temperature, flow, voltage, frequency etc.), precision engineering, medical devices, instrumentation for education (devices and software), sensor technology, mechatronics and robotics.