A. Zuhri, A. E. Pramono, I. Setyadi, A. Maksum, N. Indayaningsih
{"title":"Effect of microcarbon particle size and dispersion on the electrical conductivity of LLDPE-carbon composite","authors":"A. Zuhri, A. E. Pramono, I. Setyadi, A. Maksum, N. Indayaningsih","doi":"10.22201/icat.24486736e.2024.22.1.2215","DOIUrl":null,"url":null,"abstract":"This experimental research aimed to develop a conductive polymer composite (CPC) material for electromechanical devices. The composite was made by incorporating conductive micro carbon derived from rice husks into a Linear Low-Density Polyethylene (LLDPE) polymer matrix using hot compaction. Variations of filler composition were used, with carbon loading of 50%, 45%, and 40%, and mesh sizes of #150, #200, and #250. The experimental results showed that particle size variations did not significantly affect composite density, but higher mesh selection improved filler dispersion within the matrix, resulting in higher electrical conductivity values. The optimal conductivity value of 9.43E-04 S/cm was achieved with a micro-carbon composition of 50% loading. However, decreasing micro carbon loading had a more significant impact on reducing electrical conductivity values.","PeriodicalId":15073,"journal":{"name":"Journal of Applied Research and Technology","volume":"85 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22201/icat.24486736e.2024.22.1.2215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This experimental research aimed to develop a conductive polymer composite (CPC) material for electromechanical devices. The composite was made by incorporating conductive micro carbon derived from rice husks into a Linear Low-Density Polyethylene (LLDPE) polymer matrix using hot compaction. Variations of filler composition were used, with carbon loading of 50%, 45%, and 40%, and mesh sizes of #150, #200, and #250. The experimental results showed that particle size variations did not significantly affect composite density, but higher mesh selection improved filler dispersion within the matrix, resulting in higher electrical conductivity values. The optimal conductivity value of 9.43E-04 S/cm was achieved with a micro-carbon composition of 50% loading. However, decreasing micro carbon loading had a more significant impact on reducing electrical conductivity values.
期刊介绍:
The Journal of Applied Research and Technology (JART) is a bimonthly open access journal that publishes papers on innovative applications, development of new technologies and efficient solutions in engineering, computing and scientific research. JART publishes manuscripts describing original research, with significant results based on experimental, theoretical and numerical work.
The journal does not charge for submission, processing, publication of manuscripts or for color reproduction of photographs.
JART classifies research into the following main fields:
-Material Science:
Biomaterials, carbon, ceramics, composite, metals, polymers, thin films, functional materials and semiconductors.
-Computer Science:
Computer graphics and visualization, programming, human-computer interaction, neural networks, image processing and software engineering.
-Industrial Engineering:
Operations research, systems engineering, management science, complex systems and cybernetics applications and information technologies
-Electronic Engineering:
Solid-state physics, radio engineering, telecommunications, control systems, signal processing, power electronics, electronic devices and circuits and automation.
-Instrumentation engineering and science:
Measurement devices (pressure, temperature, flow, voltage, frequency etc.), precision engineering, medical devices, instrumentation for education (devices and software), sensor technology, mechatronics and robotics.