Structural Health Monitoring of Solid Rocket Motors: From Destructive Testing to Perspectives of Photonic-Based Sensing

Georgia Korompili, Günter Mussbach, Christos Riziotis
{"title":"Structural Health Monitoring of Solid Rocket Motors: From Destructive Testing to Perspectives of Photonic-Based Sensing","authors":"Georgia Korompili, Günter Mussbach, Christos Riziotis","doi":"10.3390/instruments8010016","DOIUrl":null,"url":null,"abstract":"In the realm of space exploration, solid rocket motors (SRMs) play a pivotal role due to their reliability and high thrust-to-weight ratio. Serving as boosters in space launch vehicles and employed in military systems, and other critical & emerging applications, SRMs’ structural integrity monitoring, is of paramount importance. Traditional maintenance approaches often prove inefficient, leading to either unnecessary interventions or unexpected failures. Condition-based maintenance (CBM) emerges as a transformative strategy, incorporating advanced sensing technologies and predictive analytics. By continuously monitoring crucial parameters such as temperature, pressure, and strain, CBM enables real-time analysis, ensuring timely intervention upon detecting anomalies, thereby optimizing SRM lifecycle management. This paper critically evaluates conventional SRM health diagnosis methods and explores emerging sensing technologies. Photonic sensors and fiber-optic sensors, in particular, demonstrate exceptional promise. Their enhanced sensitivity and broad measurement range allow precise monitoring of temperature, strain, pressure, and vibration, capturing subtle changes indicative of degradation or potential failures. These sensors enable comprehensive, non-intrusive monitoring of multiple SRM locations simultaneously. Integrated with data analytics, these sensors empower predictive analysis, facilitating SRM behavior prediction and optimal maintenance planning. Ultimately, CBM, bolstered by advanced photonic sensors, promises enhanced operational availability, reduced costs, improved safety, and efficient resource allocation in SRM applications.","PeriodicalId":507788,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/instruments8010016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the realm of space exploration, solid rocket motors (SRMs) play a pivotal role due to their reliability and high thrust-to-weight ratio. Serving as boosters in space launch vehicles and employed in military systems, and other critical & emerging applications, SRMs’ structural integrity monitoring, is of paramount importance. Traditional maintenance approaches often prove inefficient, leading to either unnecessary interventions or unexpected failures. Condition-based maintenance (CBM) emerges as a transformative strategy, incorporating advanced sensing technologies and predictive analytics. By continuously monitoring crucial parameters such as temperature, pressure, and strain, CBM enables real-time analysis, ensuring timely intervention upon detecting anomalies, thereby optimizing SRM lifecycle management. This paper critically evaluates conventional SRM health diagnosis methods and explores emerging sensing technologies. Photonic sensors and fiber-optic sensors, in particular, demonstrate exceptional promise. Their enhanced sensitivity and broad measurement range allow precise monitoring of temperature, strain, pressure, and vibration, capturing subtle changes indicative of degradation or potential failures. These sensors enable comprehensive, non-intrusive monitoring of multiple SRM locations simultaneously. Integrated with data analytics, these sensors empower predictive analysis, facilitating SRM behavior prediction and optimal maintenance planning. Ultimately, CBM, bolstered by advanced photonic sensors, promises enhanced operational availability, reduced costs, improved safety, and efficient resource allocation in SRM applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
固体火箭发动机的结构健康监测:从破坏性测试到基于光子传感的展望
在太空探索领域,固体火箭发动机(SRM)因其可靠性和高推重比而发挥着举足轻重的作用。作为太空运载火箭的助推器、军事系统以及其他关键和新兴应用中的应用,SRM 的结构完整性监测至关重要。传统的维护方法往往效率低下,导致不必要的干预或意想不到的故障。基于状态的维护(CBM)是一种变革性战略,它结合了先进的传感技术和预测分析技术。通过持续监测温度、压力和应变等关键参数,CBM 可进行实时分析,确保在发现异常时及时干预,从而优化 SRM 生命周期管理。本文批判性地评估了传统的 SRM 健康诊断方法,并探讨了新兴的传感技术。尤其是光子传感器和光纤传感器,显示出了非凡的前景。它们具有更高的灵敏度和更宽的测量范围,可对温度、应变、压力和振动进行精确监测,捕捉显示降解或潜在故障的细微变化。这些传感器可同时对多个 SRM 位置进行全面的非侵入式监测。这些传感器与数据分析技术相结合,可进行预测性分析,促进 SRM 行为预测和最佳维护规划。最终,CBM 在先进光子传感器的支持下,有望提高 SRM 应用的运行可用性、降低成本、提高安全性并实现高效的资源分配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Rapid, Non-Destructive Method to Detect Counterfeit Integrated Circuits Using a Resonant Cavity System Design and Performance of a Low-Energy Gamma-Ray Trigger System for HERD Jitter Measurements of 1 cm2 LGADs for Space Experiments Development of High-Voltage Electrodes for Neutron Scattering Sample Environment Devices The Imaging X-ray Polarimetry Explorer (IXPE) and New Directions for the Future
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1