DECIPHERING THE DEEP: MACHINE LEARNING APPROACHES TO UNDERSTANDING OCEANIC ECOSYSTEMS

Tymoteusz Miller, Adrianna Łobodzińska, Oliwia Kaczanowska, Durlik Irmina, Polina Kozlovska, Klaudia Lewita
{"title":"DECIPHERING THE DEEP: MACHINE LEARNING APPROACHES TO UNDERSTANDING OCEANIC ECOSYSTEMS","authors":"Tymoteusz Miller, Adrianna Łobodzińska, Oliwia Kaczanowska, Durlik Irmina, Polina Kozlovska, Klaudia Lewita","doi":"10.36074/grail-of-science.16.02.2024.093","DOIUrl":null,"url":null,"abstract":"This paper presents a detailed exploration of the transformative role of Machine Learning (ML) in oceanographic research, encapsulating the paradigm shift towards more efficient and comprehensive analysis of marine ecosystems. It delves into the multifaceted applications of ML, ranging from predictive modeling of ocean currents to in-depth biodiversity analysis and deciphering the complexities of deep-sea ecosystems through advanced computer vision techniques. The discussion extends to the challenges and opportunities that intertwine with the integration of AI and ML in oceanography, emphasizing the need for robust data collection, interdisciplinary collaboration, and ethical considerations. Through a series of case studies and thematic discussions, this paper underscores the profound potential of ML to revolutionize our understanding and preservation of oceanic ecosystems, setting a new frontier for future research and conservation strategies in the realm of oceanography.","PeriodicalId":475097,"journal":{"name":"Grail of science","volume":"57 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Grail of science","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.36074/grail-of-science.16.02.2024.093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a detailed exploration of the transformative role of Machine Learning (ML) in oceanographic research, encapsulating the paradigm shift towards more efficient and comprehensive analysis of marine ecosystems. It delves into the multifaceted applications of ML, ranging from predictive modeling of ocean currents to in-depth biodiversity analysis and deciphering the complexities of deep-sea ecosystems through advanced computer vision techniques. The discussion extends to the challenges and opportunities that intertwine with the integration of AI and ML in oceanography, emphasizing the need for robust data collection, interdisciplinary collaboration, and ethical considerations. Through a series of case studies and thematic discussions, this paper underscores the profound potential of ML to revolutionize our understanding and preservation of oceanic ecosystems, setting a new frontier for future research and conservation strategies in the realm of oceanography.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解密深海:了解海洋生态系统的机器学习方法
本文详细探讨了机器学习(ML)在海洋学研究中的变革性作用,概括了对海洋生态系统进行更高效、更全面分析的范式转变。文章深入探讨了 ML 的多方面应用,从洋流预测建模到深入的生物多样性分析,以及通过先进的计算机视觉技术破译深海生态系统的复杂性。讨论延伸到海洋学中人工智能和 ML 融合所带来的挑战和机遇,强调了强大的数据收集、跨学科合作和伦理考虑的必要性。通过一系列案例研究和专题讨论,本文强调了 ML 在彻底改变我们对海洋生态系统的理解和保护方面的巨大潜力,为海洋学领域的未来研究和保护战略开辟了新的前沿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ШЛЯХИ ПОДОЛАННЯ НЕГАТИВНИХ ЕМОЦІЙНИХ СТАНІВ СТУДЕНТІВ В УМОВАХ ВОЄННОГО ЧАСУ ФОРМУВАННЯ ЗДОРОВОГО СПОСОБУ ЖИТТЯ СПЕЦІАЛІСТІВ ЗАЛІЗНИЧНОГО ТРАНСПОРТУ В СУЧАСНИХ УМОВАХ НАВЧАННЯ НА ПРИКЛАДІ ЗАГАРТУВАННЯ ОРГАНІЗАЦІЯ ДОСЛІДНИЦЬКОЇ ДІЯЛЬНОСТІ УЧНІВ З ФІЗИКИ ЗАСОБАМИ ВІДЕОАНАЛІЗУ НА ПРИКЛАДІ ПРОГРАМИ TRACKER STRUCTURE-ACTIVITY RELATIONSHIP OF 5,6-DIHYDRO-TETRAZOLO[1,5-c]QUINAZOLINES TARGETING CANDIDA GLABRATA СИНДРОМ ПОЛІКІСТОЗНИХ ЯЙНИКІВ У ПІДЛІТКОВОМУ ВІЦІ
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1