Feedback linearization and equivalent-disturbance compensation control strategy for piezoelectric stage

Tao Huang, Yingbin Wang, Zhihong Luo, Huajun Cao, Guibao Tao, Mingxiang Ling
{"title":"Feedback linearization and equivalent-disturbance compensation control strategy for piezoelectric stage","authors":"Tao Huang, Yingbin Wang, Zhihong Luo, Huajun Cao, Guibao Tao, Mingxiang Ling","doi":"10.1063/10.0024700","DOIUrl":null,"url":null,"abstract":"Piezoelectric stages use piezoelectric actuators and flexure hinges as driving and amplifying mechanisms, respectively. These systems have high positioning accuracy and high-frequency responses, and they are widely used in various precision/ultra-precision positioning fields. However, the main challenge with these devices is the inherent hysteresis nonlinearity of piezoelectric actuators, which seriously affects the tracking accuracy of a piezoelectric stage. Inspired by this challenge, in this work, we developed a Hammerstein model to describe the hysteresis nonlinearity of a piezoelectric stage. In particular, in our proposed scheme, a feedback-linearization algorithm is used to eliminate the static hysteresis nonlinearity. In addition, a composite controller based on equivalent-disturbance compensation was designed to counteract model uncertainties and external disturbances. An analysis of the stability of a closed-loop system based on this feedback-linearization algorithm and composite controller was performed, and this was followed by extensive comparative experiments using a piezoelectric stage developed in the laboratory. The experimental results confirmed that the feedback-linearization algorithm and the composite controller offer improved linearization and trajectory-tracking performance.","PeriodicalId":506091,"journal":{"name":"Nanotechnology and Precision Engineering","volume":"53 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology and Precision Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/10.0024700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Piezoelectric stages use piezoelectric actuators and flexure hinges as driving and amplifying mechanisms, respectively. These systems have high positioning accuracy and high-frequency responses, and they are widely used in various precision/ultra-precision positioning fields. However, the main challenge with these devices is the inherent hysteresis nonlinearity of piezoelectric actuators, which seriously affects the tracking accuracy of a piezoelectric stage. Inspired by this challenge, in this work, we developed a Hammerstein model to describe the hysteresis nonlinearity of a piezoelectric stage. In particular, in our proposed scheme, a feedback-linearization algorithm is used to eliminate the static hysteresis nonlinearity. In addition, a composite controller based on equivalent-disturbance compensation was designed to counteract model uncertainties and external disturbances. An analysis of the stability of a closed-loop system based on this feedback-linearization algorithm and composite controller was performed, and this was followed by extensive comparative experiments using a piezoelectric stage developed in the laboratory. The experimental results confirmed that the feedback-linearization algorithm and the composite controller offer improved linearization and trajectory-tracking performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
压电平台的反馈线性化和等效干扰补偿控制策略
压电平台分别使用压电致动器和挠性铰链作为驱动和放大机构。这些系统具有高定位精度和高频响应,被广泛应用于各种精密/超精密定位领域。然而,这些装置面临的主要挑战是压电致动器固有的滞后非线性,这严重影响了压电平台的跟踪精度。受这一挑战的启发,在这项工作中,我们开发了一个哈默斯坦模型来描述压电平台的磁滞非线性。特别是,在我们提出的方案中,使用了反馈线性化算法来消除静态磁滞非线性。此外,我们还设计了一种基于等效干扰补偿的复合控制器,以抵消模型不确定性和外部干扰。基于这种反馈线性化算法和复合控制器,对闭环系统的稳定性进行了分析,随后使用实验室开发的压电平台进行了广泛的对比实验。实验结果证实,反馈线性化算法和复合控制器具有更好的线性化和轨迹跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
One-step synthesis of B and N co-doped carbon nanotubes for high-stability lithium-ion batteries Failure behavior of tantalum electrolytic capacitors under extreme dynamic impact: Mechanical–electrical model and microscale characterization Real-time generation of circular patterns in electron beam lithography Feedback linearization and equivalent-disturbance compensation control strategy for piezoelectric stage Patterning single-layer materials by electrical breakdown using atomic force microscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1