Prediction for nonlinear time series by improved deep echo state network based on reservoir states reconstruction

Qiufeng Yu, Hui Zhao, Li Teng, Li Li, Ansar Yasar, Stéphane Galland
{"title":"Prediction for nonlinear time series by improved deep echo state network based on reservoir states reconstruction","authors":"Qiufeng Yu,&nbsp;Hui Zhao,&nbsp;Li Teng,&nbsp;Li Li,&nbsp;Ansar Yasar,&nbsp;Stéphane Galland","doi":"10.1007/s43684-023-00057-3","DOIUrl":null,"url":null,"abstract":"<div><p>With the aim to enhance prediction accuracy for nonlinear time series, this paper put forward an improved deep Echo State Network based on reservoir states reconstruction driven by a Self-Normalizing Activation (SNA) function as the replacement for the traditional Hyperbolic tangent activation function to reduce the model’s sensitivity to hyper-parameters. The Strategy was implemented in a two-state reconstruction process by first inputting the time series data to the model separately. Once, the time data passes through the reservoirs and is activated by the SNA activation function, the new state for the reservoirs is created. The state is input to the next layer, and the concatenate states module saves. Pairs of states are selected from the activated multi-layer reservoirs and input into the state reconstruction module. Multiple input states are transformed through the state reconstruction module and finally saved to the concatenate state module. Two evaluation metrics were used to benchmark against three other ESNs with SNA activation functions to achieve better prediction accuracy.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-023-00057-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-023-00057-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the aim to enhance prediction accuracy for nonlinear time series, this paper put forward an improved deep Echo State Network based on reservoir states reconstruction driven by a Self-Normalizing Activation (SNA) function as the replacement for the traditional Hyperbolic tangent activation function to reduce the model’s sensitivity to hyper-parameters. The Strategy was implemented in a two-state reconstruction process by first inputting the time series data to the model separately. Once, the time data passes through the reservoirs and is activated by the SNA activation function, the new state for the reservoirs is created. The state is input to the next layer, and the concatenate states module saves. Pairs of states are selected from the activated multi-layer reservoirs and input into the state reconstruction module. Multiple input states are transformed through the state reconstruction module and finally saved to the concatenate state module. Two evaluation metrics were used to benchmark against three other ESNs with SNA activation functions to achieve better prediction accuracy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于储层状态重构的改进型深度回波态网络的非线性时间序列预测
为了提高非线性时间序列的预测精度,本文提出了一种基于水库状态重构的改进型深度回波状态网络,用自归一化激活(SNA)函数替代传统的双曲正切激活函数,以降低模型对超参数的敏感性。该策略在双态重构过程中实施,首先将时间序列数据分别输入模型。一旦时间数据通过储层并被 SNA 激活函数激活,储层的新状态就会产生。该状态被输入到下一层,并由连接状态模块保存。从激活的多层蓄水池中选取成对的状态,输入状态重建模块。多个输入状态通过状态重构模块进行转换,最后保存到串联状态模块。为了达到更高的预测精度,我们使用了两个评估指标来与其他三个使用 SNA 激活函数的 ESN 进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
期刊最新文献
Stabilization of nonlinear safety-critical systems by relaxed converse Lyapunov-barrier approach and its applications in robotic systems Pedestrian safety alarm system based on binocular distance measurement for trucks using recognition feature analysis Multi-objective optimal trajectory planning for manipulators based on CMOSPBO A multi-step regularity assessment and joint prediction system for ordering time series based on entropy and deep learning Life cycle assessment of metal powder production: a Bayesian stochastic Kriging model-based autonomous estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1