Efficient and accurate road crack detection technology based on YOLOv8-ES

Kaili Zeng, Rui Fan, Xiaoyu Tang
{"title":"Efficient and accurate road crack detection technology based on YOLOv8-ES","authors":"Kaili Zeng,&nbsp;Rui Fan,&nbsp;Xiaoyu Tang","doi":"10.1007/s43684-025-00091-3","DOIUrl":null,"url":null,"abstract":"<div><p>Road damage detection is an important aspect of road maintenance. Traditional manual inspections are laborious and imprecise. With the rise of deep learning technology, pavement detection methods employing deep neural networks give an efficient and accurate solution. However, due to background diversity, limited resolution, and fracture similarity, it is tough to detect road cracks with high accuracy. In this study, we offer a unique, efficient and accurate road crack damage detection, namely YOLOv8-ES. We present a novel dynamic convolutional layer(EDCM) that successfully increases the feature extraction capabilities for small fractures. At the same time, we also present a new attention mechanism (SGAM). It can effectively retain crucial information and increase the network feature extraction capacity. The Wise-IoU technique contains a dynamic, non-monotonic focusing mechanism designed to return to the goal-bounding box more precisely, especially for low-quality samples. We validate our method on both RDD2022 and VOC2007 datasets. The experimental results suggest that YOLOv8-ES performs well. This unique approach provides great support for the development of intelligent road maintenance systems and is projected to achieve further advances in future applications.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-025-00091-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-025-00091-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Road damage detection is an important aspect of road maintenance. Traditional manual inspections are laborious and imprecise. With the rise of deep learning technology, pavement detection methods employing deep neural networks give an efficient and accurate solution. However, due to background diversity, limited resolution, and fracture similarity, it is tough to detect road cracks with high accuracy. In this study, we offer a unique, efficient and accurate road crack damage detection, namely YOLOv8-ES. We present a novel dynamic convolutional layer(EDCM) that successfully increases the feature extraction capabilities for small fractures. At the same time, we also present a new attention mechanism (SGAM). It can effectively retain crucial information and increase the network feature extraction capacity. The Wise-IoU technique contains a dynamic, non-monotonic focusing mechanism designed to return to the goal-bounding box more precisely, especially for low-quality samples. We validate our method on both RDD2022 and VOC2007 datasets. The experimental results suggest that YOLOv8-ES performs well. This unique approach provides great support for the development of intelligent road maintenance systems and is projected to achieve further advances in future applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
期刊最新文献
Efficient and accurate road crack detection technology based on YOLOv8-ES A cooperative jamming decision-making method based on multi-agent reinforcement learning Enhanced bearing RUL prediction based on dynamic temporal attention and mixed MLP An interaction-fair semi-decentralized trajectory planner for connected and autonomous vehicles Network synchronizability enhancement via adding antagonistic interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1