System of Smart Home Based on Speech Recognition with Machine Learning

Baihua Li
{"title":"System of Smart Home Based on Speech Recognition with Machine Learning","authors":"Baihua Li","doi":"10.56028/aetr.9.1.796.2024","DOIUrl":null,"url":null,"abstract":"This article designs and implements a system of smart home based on speech recognition with machine learning and Android. The STM32 microcontroller is combined with actuating components to control home devices by obtaining server control commands through the network. This article designs a smart home APP based on Android and Google Voice Search, optimizes the speech recognition algorithm by using the training results from Word2Vector model to improve the recall rate of the speech recognition of command samples. This APP displays environmental data according to the scenario for users, such as the temperature, humidity, and alert of smoke gas. The test results show that the recognition recall rate of the test data of control commands from users of different ages is increased to 94.4% with high stability. ","PeriodicalId":355471,"journal":{"name":"Advances in Engineering Technology Research","volume":"20 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56028/aetr.9.1.796.2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article designs and implements a system of smart home based on speech recognition with machine learning and Android. The STM32 microcontroller is combined with actuating components to control home devices by obtaining server control commands through the network. This article designs a smart home APP based on Android and Google Voice Search, optimizes the speech recognition algorithm by using the training results from Word2Vector model to improve the recall rate of the speech recognition of command samples. This APP displays environmental data according to the scenario for users, such as the temperature, humidity, and alert of smoke gas. The test results show that the recognition recall rate of the test data of control commands from users of different ages is increased to 94.4% with high stability. 
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习语音识别的智能家居系统
本文设计并实现了一个基于机器学习语音识别和安卓系统的智能家居系统。STM32 微控制器与执行元件相结合,通过网络获取服务器控制指令来控制家居设备。本文设计了一款基于 Android 和谷歌语音搜索的智能家居 APP,利用 Word2Vector 模型的训练结果优化了语音识别算法,提高了命令样本的语音识别召回率。该 APP 根据用户使用场景显示环境数据,如温度、湿度、烟雾气体警报等。测试结果表明,来自不同年龄段用户的控制指令测试数据的识别召回率提高到了 94.4%,且具有很高的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Response Characteristics of GPR Method for Detecting Phreatic Lines in Embankments Research on the composition of glass relics based on CART model Research on component content model of ancient glass products based on statistical analysis The Significance of Big Data to the Design and Transformation of Rural Art Space Coupled Vibration Analysis of a Beam-Arch Composite Continuous Rigid Structure with Parallel Traffic Flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1