Qiang Xie , Chenglong Liu , Wenhui Fu , Chen Chen , Dan Luo , Shimin Gu , Wentong Xue
{"title":"A distinct metabolomic pattern revealed intestinal microenvironment factor-mediated food allergy in a BALB/c mouse model","authors":"Qiang Xie , Chenglong Liu , Wenhui Fu , Chen Chen , Dan Luo , Shimin Gu , Wentong Xue","doi":"10.26599/FSHW.2023.9250049","DOIUrl":null,"url":null,"abstract":"<div><div>Intestinal immune homeostasis plays a critical role in the pathogenesis of food allergy. However, the association between intestinal microenvironment factors and food allergy severity is not well studied. In this study, we established a gluten allergy (GA) BALB/c mouse model and revealed the intestinal luminal factor-mediated alterations in phenotypes and endotypes of GA, combined with untargeted metabolomic profiling of the colonic contents. Our results showed that gluten sensitization induced severe allergic responses in BALB/c mice, characterized by exacerbated clinical allergic and diarrheal symptoms, increased histamine, elevated gluten-specific immunoglobulin (Ig)E and IgG2a levels, and increased mast cell degranulation. In response to GA, T-cell balance was disrupted, with aberrant production of interleukin (IL)-4, interferon (IFN)-γ, IL-10, and IL-2 in the spleen. GA led to a disrupted intestinal microenvironment homeostasis, including increased pH and water content, impaired intestinal antioxidant capacity and epithelial barrier function, decreased short-chain fatty acid production, and microbial dysbiosis, which was strongly correlated with GA severity. By metabolomic profiling, we found 29 differential expressed metabolites (DEMs) associated with GA, with 9 down-regulated and 20 up-regulated. A total of 11 out of all DEMs were classified into dipeptides, and 10 of them were up-regulated in the GA mice. Pathway enrichment analysis showed that most of the DEMs were enriched into the bile secretion metabolic route.</div></div>","PeriodicalId":12406,"journal":{"name":"Food Science and Human Wellness","volume":"13 6","pages":"Pages 3680-3696"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Human Wellness","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213453024002787","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intestinal immune homeostasis plays a critical role in the pathogenesis of food allergy. However, the association between intestinal microenvironment factors and food allergy severity is not well studied. In this study, we established a gluten allergy (GA) BALB/c mouse model and revealed the intestinal luminal factor-mediated alterations in phenotypes and endotypes of GA, combined with untargeted metabolomic profiling of the colonic contents. Our results showed that gluten sensitization induced severe allergic responses in BALB/c mice, characterized by exacerbated clinical allergic and diarrheal symptoms, increased histamine, elevated gluten-specific immunoglobulin (Ig)E and IgG2a levels, and increased mast cell degranulation. In response to GA, T-cell balance was disrupted, with aberrant production of interleukin (IL)-4, interferon (IFN)-γ, IL-10, and IL-2 in the spleen. GA led to a disrupted intestinal microenvironment homeostasis, including increased pH and water content, impaired intestinal antioxidant capacity and epithelial barrier function, decreased short-chain fatty acid production, and microbial dysbiosis, which was strongly correlated with GA severity. By metabolomic profiling, we found 29 differential expressed metabolites (DEMs) associated with GA, with 9 down-regulated and 20 up-regulated. A total of 11 out of all DEMs were classified into dipeptides, and 10 of them were up-regulated in the GA mice. Pathway enrichment analysis showed that most of the DEMs were enriched into the bile secretion metabolic route.
期刊介绍:
Food Science and Human Wellness is an international peer-reviewed journal that provides a forum for the dissemination of the latest scientific results in food science, nutriology, immunology and cross-field research. Articles must present information that is novel, has high impact and interest, and is of high scientific quality. By their effort, it has been developed to promote the public awareness on diet, advocate healthy diet, reduce the harm caused by unreasonable dietary habit, and directs healthy food development for food industrial producers.