{"title":"A Hybrid Integrated and Low-Cost Multi-Chip Broadband Doherty Power Amplifier Module for 5G Massive MIMO Application","authors":"","doi":"10.1016/j.eng.2024.01.017","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a hybrid integrated broadband Doherty power amplifier (DPA) based on a multi-chip module (MCM), whose active devices are fabricated using the gallium nitride (GaN) process and whose passive circuits are fabricated using the gallium arsenide (GaAs) integrated passive device (IPD) process, is proposed for 5G massive multiple-input multiple-output (MIMO) application. An inverted DPA structure with a low<em>-Q</em> output network is proposed to achieve better bandwidth performance, and a single-driver architecture is adopted for a chip with high gain and small area. The proposed DPA has a bandwidth of 4.4–5.0 GHz that can achieve a saturation of more than 45.0 dBm. The gain compression from 37 dBm to saturation power is less than 4 dB, and the average power-added efficiency (PAE) is 36.3% with an 8.5 dB peak-to-average power ratio (PAPR) in 4.5–5.0 GHz. The measured adjacent channel power ratio (ACPR) is better than −50 dBc after digital predistortion (DPD), exhibiting satisfactory linearity.</p></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"38 ","pages":"Pages 223-232"},"PeriodicalIF":10.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095809924000687/pdfft?md5=b1a1a4a6f0273668c00ab9534791f9f7&pid=1-s2.0-S2095809924000687-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924000687","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a hybrid integrated broadband Doherty power amplifier (DPA) based on a multi-chip module (MCM), whose active devices are fabricated using the gallium nitride (GaN) process and whose passive circuits are fabricated using the gallium arsenide (GaAs) integrated passive device (IPD) process, is proposed for 5G massive multiple-input multiple-output (MIMO) application. An inverted DPA structure with a low-Q output network is proposed to achieve better bandwidth performance, and a single-driver architecture is adopted for a chip with high gain and small area. The proposed DPA has a bandwidth of 4.4–5.0 GHz that can achieve a saturation of more than 45.0 dBm. The gain compression from 37 dBm to saturation power is less than 4 dB, and the average power-added efficiency (PAE) is 36.3% with an 8.5 dB peak-to-average power ratio (PAPR) in 4.5–5.0 GHz. The measured adjacent channel power ratio (ACPR) is better than −50 dBc after digital predistortion (DPD), exhibiting satisfactory linearity.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.