Wei Li, Yuzhen Niu, Haihong Huang, A. Garg, Liang Gao
{"title":"Multidisciplinary Robust Design Optimization Incorporating Extreme Scenario in Sparse Samples","authors":"Wei Li, Yuzhen Niu, Haihong Huang, A. Garg, Liang Gao","doi":"10.1115/1.4064632","DOIUrl":null,"url":null,"abstract":"\n Robust design optimization (RDO) is a potent methodology that ensures stable performance in designed products during their operational phase. However, there remains a scarcity of robust design optimization methods that account for the intricacies of multidisciplinary coupling. In this paper we propose a multidisciplinary robust design optimization (MRDO) framework for physical systems under sparse samples containing the extreme scenario. The collaboration model is used to select samples that comply with multidisciplinary feasibility, avoiding time-consuming multidisciplinary decoupling analyses. To assess the robustness of sparse samples containing the extreme scenario, linear moment estimation is employed as the evaluation metric. The comparative analysis of MRDO results is conducted across various sample sizes, with and without the presence of the extreme scenario. The effectiveness and reliability of the proposed method are demonstrated through a mathematical case, a conceptual aircraft sizing design, and an energy efficiency optimization of a hobbing machine tool.","PeriodicalId":50137,"journal":{"name":"Journal of Mechanical Design","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4064632","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Robust design optimization (RDO) is a potent methodology that ensures stable performance in designed products during their operational phase. However, there remains a scarcity of robust design optimization methods that account for the intricacies of multidisciplinary coupling. In this paper we propose a multidisciplinary robust design optimization (MRDO) framework for physical systems under sparse samples containing the extreme scenario. The collaboration model is used to select samples that comply with multidisciplinary feasibility, avoiding time-consuming multidisciplinary decoupling analyses. To assess the robustness of sparse samples containing the extreme scenario, linear moment estimation is employed as the evaluation metric. The comparative analysis of MRDO results is conducted across various sample sizes, with and without the presence of the extreme scenario. The effectiveness and reliability of the proposed method are demonstrated through a mathematical case, a conceptual aircraft sizing design, and an energy efficiency optimization of a hobbing machine tool.
期刊介绍:
The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.
Scope: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.