A Compact DQN Model for Mobile Agents with Collision Avoidance

M. Kamola
{"title":"A Compact DQN Model for Mobile Agents with Collision Avoidance","authors":"M. Kamola","doi":"10.14313/jamris/2-2023/13","DOIUrl":null,"url":null,"abstract":"This paper presents a complete simulation and reinforcement learning solution to train mobile agents’ strategy of route tracking and avoiding mutual collisions. The aim was to achieve such functionality with limited resources, w.r.t. model input and model size itself. The designed models prove to keep agents safely on the track. Collision avoidance agent’s skills developed in the course of model training are primitive but rational. Small size of the model allows fast training with limited computational resources.","PeriodicalId":37910,"journal":{"name":"Journal of Automation, Mobile Robotics and Intelligent Systems","volume":"18 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation, Mobile Robotics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14313/jamris/2-2023/13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a complete simulation and reinforcement learning solution to train mobile agents’ strategy of route tracking and avoiding mutual collisions. The aim was to achieve such functionality with limited resources, w.r.t. model input and model size itself. The designed models prove to keep agents safely on the track. Collision avoidance agent’s skills developed in the course of model training are primitive but rational. Small size of the model allows fast training with limited computational resources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有避免碰撞功能的移动代理紧凑型 DQN 模型
本文提出了一个完整的模拟和强化学习解决方案,用于训练移动代理的路线跟踪和避免相互碰撞的策略。其目的是利用有限的资源、模型输入和模型本身的大小来实现这种功能。事实证明,所设计的模型能保证代理安全地行驶在轨道上。在模型训练过程中,避撞代理开发的技能是原始而合理的。模型体积小,可以利用有限的计算资源进行快速训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Automation, Mobile Robotics and Intelligent Systems
Journal of Automation, Mobile Robotics and Intelligent Systems Engineering-Control and Systems Engineering
CiteScore
1.10
自引率
0.00%
发文量
25
期刊介绍: Fundamentals of automation and robotics Applied automatics Mobile robots control Distributed systems Navigation Mechatronics systems in robotics Sensors and actuators Data transmission Biomechatronics Mobile computing
期刊最新文献
A Numerical Analysis Based Internet of Things (IOT) and Big Data Analytics to Minimize Energy Consumption in Smart Buildings Design of Small-Phase Time-Variant Low-pass Digital Fractional Differentiators and Integrators Comparative Analysis of CNN-Based Smart Pre-Trained Models for Object Detection on DOTA Research to Simulate the Ship’s Vibration Regeneration System using a 6-Degree Freedom Gough-Stewart Parallel Robot Effective Nonlinear Predictive and CTC-PID Control of Rigid Manipulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1